pd.to_datetime(str(t_date))
pd.Timestamp(t_date)
#t_date的前一天
pre_date = pd.Timestamp(str(t_date)) - pd.Timedelta(days=1)
#生成一段时间内的所有日期,给定频率
ploygonTime = pd.date_range('20030101','20231029',freq='1M')
pd.to_datetime(str(t_date)):这个函数将一个字符串表示的日期转换为pandas的Timestamp对象。t_date是一个日期字符串,通过str()函数将其转换为字符串形式,然后使用pd.to_datetime()将其转换为Timestamp对象。
pd.Timestamp(t_date):这个函数将一个日期字符串直接转换为pandas的Timestamp对象。与前一个函数类似,但是不需要使用str()函数进行转换。
pre_date = pd.Timestamp(str(t_date)) - pd.Timedelta(days=1):这行代码计算了t_date的前一天日期。pd.Timestamp(str(t_date))将t_date转换为Timestamp对象,然后使用pd.Timedelta(days=1)创建一个时间增量,表示1天的时间间隔。通过减去这个时间增量,就可以得到t_date的前一天日期。
ploygonTime = pd.date_range('20030101','20231029',freq='1M'):这行代码生成了一个日期范围,从2003年1月1日到2023年10月29日,频率为每月('1M')。pd.date_range()函数用于生成一段时间内的所有日期,给定的起始日期和结束日期以及频率参数。在这个例子中,生成了从2003年1月1日开始的每个月的日期。