python pandas中时间类型

文章介绍了如何使用Pandas库中的pd.to_datetime将日期字符串转换为Timestamp对象,以及如何通过pd.Timedelta计算日期差和pd.date_range生成特定频率的日期序列,如每月一次。
摘要由CSDN通过智能技术生成

pd.to_datetime(str(t_date))

pd.Timestamp(t_date)

#t_date的前一天

pre_date = pd.Timestamp(str(t_date)) - pd.Timedelta(days=1)

#生成一段时间内的所有日期,给定频率

ploygonTime = pd.date_range('20030101','20231029',freq='1M')

pd.to_datetime(str(t_date)):这个函数将一个字符串表示的日期转换为pandas的Timestamp对象。t_date是一个日期字符串,通过str()函数将其转换为字符串形式,然后使用pd.to_datetime()将其转换为Timestamp对象。

pd.Timestamp(t_date):这个函数将一个日期字符串直接转换为pandas的Timestamp对象。与前一个函数类似,但是不需要使用str()函数进行转换。

pre_date = pd.Timestamp(str(t_date)) - pd.Timedelta(days=1):这行代码计算了t_date的前一天日期。pd.Timestamp(str(t_date))将t_date转换为Timestamp对象,然后使用pd.Timedelta(days=1)创建一个时间增量,表示1天的时间间隔。通过减去这个时间增量,就可以得到t_date的前一天日期。

ploygonTime = pd.date_range('20030101','20231029',freq='1M'):这行代码生成了一个日期范围,从2003年1月1日到2023年10月29日,频率为每月('1M')。pd.date_range()函数用于生成一段时间内的所有日期,给定的起始日期和结束日期以及频率参数。在这个例子中,生成了从2003年1月1日开始的每个月的日期。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值