回溯法介绍
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。
回溯是递归的副产品,只要有递归就会有回溯。
回溯法解决问题
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
回溯模板
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
回溯三部曲
-
递归函数的返回值以及参数
-
回溯函数终止条件
-
单层搜索的过程
1.组合
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
dfs(n,k,1);
return result;
}
public void dfs(int n,int k,int startIndex){
//终止条件
if(path.size()==k){
result.add(new ArrayList<>(path));
return;
}
//单层逻辑
for(int i = startIndex; i <= n - (k - path.size()) + 1;i++){
path.add(i);
dfs(n,k,i+1);
path.removeLast();
}
}
}
2.组合总和III
思路:
k控制树的深度–递归的深度
n控制树的宽度–for循环的范围
代码实现:
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
dfs(n,k,0,1);
return result;
}
public void dfs(int targetSum,int k,int sum,int startIndex){
//剪枝
if(sum>targetSum){
return;
}
//终止条件
if(path.size()==k){
if(sum==targetSum) result.add(new ArrayList<>(path));
return;
}
//单层逻辑
for(int i = startIndex; i <= 9 - (k - path.size()) + 1;i++){
sum+=i;
path.add(i);
dfs(targetSum,k,sum,i+1);
sum-=i;
path.removeLast();
}
}
}
3.电话号码的字母组合
思路:
1.先用数组把字符串和数字做映射
2.根据输入的数字判断其字符串
3.做拼接,做回溯
回溯三部曲:
- 确定回溯函数参数
参数指定是有题目中给的string digits,然后还要有二个参数就是int型的num,String型的numString
- 确定终止条件
if(num==digits.length()){
list.add(temp.toString());
return;
}
- 确定单层遍历逻辑
String str = numString[digits.charAt(num)-'0'];
for(int i =0;i<str.length();i++){
temp.append(str.charAt(i));
dfs(digits,numString,num+1);
temp.deleteCharAt(temp.length()-1);
补充:
例如’23’,2代表"abc"
则树型结构的宽度为3
树形结构的深度为2
num为0,则str代表2对应的abc
代码实现:
class Solution {
//设置全局列表存储最后的结果
List<String> list = new ArrayList<>();
public List<String> letterCombinations(String digits) {
if (digits == null || digits.length() == 0) {
return list;
}
//初始对应所有的数字,为了直接对应2-9,新增了两个无效的字符串""
String[] numString = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
//迭代处理
dfs(digits, numString, 0);
return list;
}
//每次迭代获取一个字符串,所以会设计大量的字符串拼接,所以这里选择更为高效的 StringBuild
StringBuilder temp = new StringBuilder();
//比如digits如果为"23",num(代表当前数组字符串的下标索引) 为0,则str表示2对应的 abc
public void dfs(String digits, String[] numString, int num) {
//遍历全部一次记录一次得到的字符串
if (num == digits.length()) {
list.add(temp.toString());
return;
}
//str 表示当前num对应的字符串
String str = numString[digits.charAt(num) - '0'];
for (int i = 0; i < str.length(); i++) {
temp.append(str.charAt(i));
dfs(digits, numString, num + 1);
//剔除末尾的继续尝试
temp.deleteCharAt(temp.length() - 1);
}
}
}