时间复杂度和空间复杂度

本文探讨了算法效率的两种度量方法:事后统计法和事前分析估算法。事后统计通过执行次数衡量时间复杂度,而事前分析则关注算法随问题规模增长的速度。大O阶的推导用于简化时间复杂度表达,常见的有常数、线性、平方等。同时,区分最坏情况和平均情况对于理解算法性能至关重要。建议观看小甲鱼的教程以深入理解这些概念。
摘要由CSDN通过智能技术生成

算法效率的度量方法

事后统计法和事前分析估算法

事后统计方法有一定的缺陷:

时间复杂度:定义太长就不说了呜呜呜,刚开始看定义我也没看懂,,建议去听小甲鱼的讲解

关键需要知道执行次数等于时间,

一般情况下。随着问题规模n的增大,T(n)增长最慢的算法为最优算法

推导大O阶的方法:

常见的时间复杂度

 

  

最坏情况与平均·情况:

在小甲鱼的视频中学到了书上没的东西,嘿嘿

很多内容因为我懒,所以没有在上面体现,建议去看小甲鱼,幽默通俗易懂,,,,下一结开始线性表,,, 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值