题目
难度: 简单
描述:
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
- nums1.length == m + n
- nums2.length == n
- 0 <= m, n <= 200
- 1 <= m + n <= 200
- -109 <= nums1[i], nums2[j] <= 109
思路
思路:这道题m和n的范围在为100,因此可以使用,同时也可以使用一层for循环,借助双指针来进行解答
暴力法:两层for循环去解决,通过两层循环去比较大小,然后借助第三个辅助数组来进行存储, 时间复杂度是O(n^2),空间复杂度是O(n)
双指针:同时也可以使用两个指针,分别指向两个数组,然后比较移动,可以借助一个新的数组来进行协助,也可以直接在nums1数组上进行修改,时间复杂度是O(n),空间复杂度可以是O(n)或者O(1)
本文使用双指针来进行作答
代码
使用辅助数组 + 双指针
//合并两个有序数组
public void merge(int[] nums1,int m,int[] nums2,int n){
//使用双指针
int p1 = 0;
int p2 =0;
int i =0;
int[] num = new int[m+n];
while(p1<m && p2 <n){
if(nums1[p1]<=nums2[p2]){
num[i++] = nums1[p1++];
}else{
num[i++] = nums2[p2++];
}
}
for(;p1<m;p1++){
num[i++] = nums1[p1];
}
for(;p2<n;p2++){
num[i++] = nums1[p2];
}
for(int k =0;k<m+n;k++){
nums1[k] = num[k];
}
}
不使用辅助数组
//合并两个有序数组
public void merge1(int[] nums1,int m,int[] nums2,int n){
//使用双指针
int p1 = m-1;
int p2 =n-1;
int i =m+n-1;
while(p1>=0 && p2 >=0){
if(nums1[p1]>nums2[p2]){
nums1[i--] = nums1[p1--];
}else{
nums1[i--] = nums2[p2--];
}
}
for(;p2>=0;p2--){
nums1[i--] = nums1[p2];
}
}