清单
● 62 不同路径
● 63 不同路径II
LeetCode #62 不同路径
1. 题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
2. 思路
- dp含义: 到达点i的总路径 dp[i][j]
- 递推公式: dp[i][j] = dp[i-1][j] + dp[i][j-1]
- 初始化: dp[i][0] = 1/ dp[0][j-1] = 1
- 从前往后遍历
3. 代码实现
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
#无特殊情况
#初始化数组
dp = [[0]*n for _ in range(m)]
#初始化
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
#遍历
for i in range(1,m):
for j in range(1,n):
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[m-1][n-1]
LeetCode #63 不同路径II
1. 题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
2. 思路
- dp含义: 到达终点的总路程 dp[i][j]
- 递推公式: dp[i][j] = dp[i-1][j] + dp[i][j-1]
- 初始化: 初始路径为1
- 行列分开遍历一次用于路径赋值,第二次嵌套遍历用于记录路径,当遇到obstacleGrid[i][j]==1时,跳至下一次遍历
3. 代码实现
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid) #行
n = len(obstacleGrid[0]) #列
#特殊情况
if obstacleGrid[0][0] == 1 or obstacleGrid[m-1][n-1] == 1:
return 0
#初始化数组
dp = [[0] * n for _ in range(m)]
#初始化
dp[0][0] = 1
#第一行路径赋值
for i in range(1,m):
if obstacleGrid[i][0] == 0:
dp[i][0] = dp[i-1][0]
#第一列路径赋值
for j in range(1,n):
if obstacleGrid[0][j] == 0:
dp[0][j] = dp[0][j-1]
#遍历数组
for i in range(1,m):
for j in range(1,n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[m-1][n-1]