CDAM 第一章 数据资产管理理论

在数字化时代,数据已成为组织最核心的资产之一,深刻改变着生产、生活方式和社会治理方式。DAMA数据资产管理理论为数据资产的管理和运营提供了系统性的指导。以下是本章节的重点内容:

一、数据的定义与价值

  • 数据的定义:数据是对信息的记录,是客观的、无序的,作为新型生产要素,数据已融入生产、分配、流通、消费和社会服务管理等各个环节。

  • 数据的价值:数据是数字经济发展的关键生产要素,蕴含着巨大的经济价值与社会价值。数据资产是指可以作为资产入表或交易的数据资源,具有独特性,如确权难、估值难、不会消耗、无形等特征。

二、DAMA数据资产管理的10项财会原则

  • 问责原则:组织必须确定对各种类型数据和内容负有最终责任的个人。

  • 资产原则:数据内容是资产,应像物理或金融资产一样进行管理、担保和核算。

  • 审计原则:数据和内容的准确性要接受独立机构的定期审计。

  • 尽职调查原则:必须报告已知风险,并确认可能存在风险,包括与不良数据管理实践相关的风险。

  • 持续经营原则:数据对组织的成功、持续运营和管理至关重要,不是临时手段或业务副产品。

  • 估值级别原则:在最合理或最容易测量的级别上对数据进行估值。

  • 责任原则:基于监管和伦理,存在与数据及内容有关的滥用或管理不当的财务责任。

  • 质量原则:数据准确性、数据生命周期和内容会影响组织的财务状况。

  • 风险原则:与数据和内容相关的风险必须得到正式确认,无论是作为负债还是作为管理和降低固有风险的成本。

  • 价值原则:数据和内容的价值基于满足组织目标的方式、可流通性以及对组织商誉的贡献来判断。

三、以数据为中心的组织

  • 定义:数据不再只是业务过程的附属品,而是独立的资产。以数据为中心的组织将数据作为资产估值,在生命周期所有阶段进行管理,包括项目开发和持续运营阶段。

  • 转变:组织必须改变将战略转化为行动的方式,数据不再被作为流程和业务产品的附属,业务处理的目标是为了得到高质量的数据。有效数据管理成为企业致力于通过分析获得洞察、制定决策时的高优先级事项。

四、数据资产入表的步骤

数据资产入表分为以下六步:

  1. 数据资源和数据资产的盘点:由数据团队和业务团队完成,输出物为数据资产目录。

  2. 数据合规的审核和确权:由第三方机构(如律师事务所、会计师事务所、数据交易所等)和数据团队完成,输出物为合规和确权文书。

  3. 数据质量评估:由数据团队和业务团队完成,输出物为数据质量报告。

  4. 确定场景和收益:由会计师事务所等第三方机构和数据团队完成,输出物为场景和收益报告。

  5. 成本合理归集与分摊:由会计师事务所等第三方机构和数据团队完成,输出物为成本归集和分摊报告。

  6. 数据资源入表和披露:由会计师事务所和数据团队完成,输出物为会计报表和年终审计等。

五、数据质量的PDCA循环

  • 定义:PDCA循环(Plan-Do-Check-Act)是质量管理的基本方法,用于数据资产入表管理中的数据质量管理。

  • 应用场景:当现有数据资产的数据质量测量值低于目标值、新数据集增加到数据资产中、对现有数据资产提出新的数据质量要求、业务规则、标准或期望发生变更时,需要开展PDCA工作。

  • 具体环节

    • Plan(计划):确定入表数据的数据质量目标和策略。

    • Do(执行):根据计划进行实际的数据处理和分析工作。

    • Check(检查):对执行结果进行评估和检查。

    • Act(行动):根据检查结果采取措施改进数据质量。

六、数据质量管理的实施路径与原则

  • 实施路径:包括制定数据资产标准、搭建数据资产质量平台、实施数据资产质量监控、开展数据资产质量评价和强化数据资产质量运营五个阶段。

  • 原则:共有十条,其中最重要的是数据优先原则,其他原则包括标准驱动、客观测证和透明度、嵌入业务流程、系统强制执行、生命周期管理、预防、根因修正、治理、重要性。

七、数据安全管理

数据安全管理是数据资产管理的底线,主要内容包括:

  1. 明确安全策略与规范:制定数据安全策略和操作规程,设定数据访问权限。

  2. 数据分类与保护:对数据进行分类,识别敏感和核心数据,进行加密存储和传输。

  3. 强化数据质量控制:在数据入表前进行清洗、验证和去重,建立数据质量检查机制。

  4. 数据安全审计与监控:定期审计数据资产入表过程,实时监控数据访问和修改行为。

  5. 加强人员管理与培训:对参与数据资产入表的人员进行安全教育和培训,建立岗位责任制度。

  6. 建立应急响应机制:制定应急预案,定期进行应急演练。

  7. 利用先进技术保障安全:采用加密技术、数据脱敏技术和访问控制技术,利用大数据分析和人工智能技术进行实时监控和预警。

八、DIKW和DRAC模型

在数据管理领域,DIKW和DRAC是两个重要的模型,它们从不同角度阐述了数据的价值实现路径。

1、DIKW模型
DIKW模型描述了数据通过层层加工转化为智慧的过程:

Data(数据):原始的、未经加工的事实和记录。

Information(信息):经过整理和加工的数据,能够回答“是什么”的问题。

Knowledge(知识):对信息进行分析和归纳后形成的规律性认识,能够回答“怎么做”的问题。

Widom(智慧):基于知识的深度理解和应用,能够回答“为什么”以及“如何做出最佳决策”的问题。s

核心要点:数据通过信息、知识的转化,最终为业务赋能,间接实现其价值。

2、DRAC模型
DRAC模型则强调数据作为生产要素的直接价值:

Data(数据):作为基础资源,是所有后续价值的起点。

Resource(资源):数据经过整合和管理后,成为可利用的资源。

Asset(资产):当数据资源具备经济价值、可被管理和计量时,就成为资产。

Capital(资本):数据资产进一步参与市场交易和投资,形成数据资本。
核心要点:数据通过资源化、资产化和资本化,直接实现其经济价值。

九、数据治理与数据资产入表

数据治理是数据资产入表的前提和基础,它通过一系列管理活动确保数据的质量、安全和合规性,从而为数据资产的会计核算和信息披露提供支持。

  1. 数据治理的重要性
    数据资产入表要求数据资源满足资产确认条件,如具有经济利益、可靠计量、企业控制等。这些条件的实现离不开数据治理的支持。数据治理通过以下方面发挥作用:

    • 数据质量管理:确保数据的准确性、完整性、一致性、及时性。

    • 数据安全管理:保障数据的完整性、保密性和可用性。

    • 数据标准管理:统一数据的定义和格式,便于管理和应用。

    • 元数据管理:帮助企业和组织识别、分类和评估数据资源。
      核心要点:数据治理为数据资产入表提供了可靠性和合规性保障。

  2. 数据资产盘点计划
    数据资产盘点是数据治理的重要环节,包括业务视角和技术视角两个方面:

    • 业务视角:从业务流程出发,梳理制度文件、流程表单,识别关键数据,定义数据的分类体系和业务属性。

    • 技术视角:从系统数据出发,探查数据结构、存量、增量和存储方式,定义数据资产的技术属性。
      具体步骤

    1. 开始盘点:按照计划清点数据资产,确保记录准确无误。

    2. 核实结果:通过交叉检查等方式,确保盘点结果的准确性。

    3. 处理差异:对盘点结果与实际情况的差异进行调查和修正。

    4. 编制报告:形成盘点报告,包括资产清单、盘点表格和盘点结论。
      核心要点:数据资产盘点是企业了解自身数据资产状况的基础,为后续数据治理和入表工作提供依据。


👏觉得文章对自己有用的宝子可以收藏文章并给小编点个赞!

👏想了解更多统计学、数据分析、数据开发、机器学习算法、数据治理、数据资产管理和深度学习等有关知识的宝子们,可以关注小编,希望以后我们一起成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值