2.2 量子力学的假设
2.2.1 状态空间
量子力学的第一条公设确立了量子力学所适用的场合:希尔伯特空间。
公设1
公设1:任意一个孤立的物理系统都与一个称为系统状态空间的复内积向量空间(即希尔伯特空间)相联系。系统完全由状态向量来描述,它是系统状态空间里的一个单位向量。
最简单的量子力学系统:量子比特
量子比特是一个二维的状态空间。假设
∣
0
⟩
\left | 0 \right \rangle
∣0⟩和
∣
1
⟩
\left | 1 \right \rangle
∣1⟩形成了这个状态空间的一组标准正交基,那么这个状态空间的任意向量都可以写成
∣
ψ
⟩
=
a
∣
0
⟩
+
b
∣
1
⟩
(
2.82
)
\left | \psi \right \rangle =a\left | 0 \right \rangle +b\left | 1 \right \rangle (2.82)
∣ψ⟩=a∣0⟩+b∣1⟩(2.82)
其中
a
a
a和
b
b
b是任意的复数。
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩是一个单位向量的条件是
⟨
ψ
∣
ψ
⟩
=
1
\left \langle \psi | \psi \right \rangle =1
⟨ψ∣ψ⟩=1,等价于
∣
a
∣
2
+
∣
b
∣
2
=
1
|a|^2+|b|^2=1
∣a∣2+∣b∣2=1。
- 量子力学不会告诉一个特定量子系统中的状态空间或量子态。
- 描述量子比特的物理系统是真实存在的。
- 量子比特与比特的区别在于这两个状态可以叠加,产生 a ∣ 0 ⟩ + b ∣ 1 ⟩ a\left | 0 \right \rangle +b\left | 1 \right \rangle a∣0⟩+b∣1⟩的形式,叠加态下不能硕这两个比特处于确定的 ∣ 0 ⟩ \left | 0 \right \rangle ∣0⟩或 ∣ 1 ⟩ \left | 1 \right \rangle ∣1⟩。
- ∑ i α i ∣ ψ i ⟩ {\textstyle \sum_{i}} \alpha _i\left | \psi_i \right \rangle ∑iαi∣ψi⟩理解为状态 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩以振幅 α i \alpha _i αi的叠加。
2.2.2 演化
量子力学的第二条公设提供了状态 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩随时间而改变的一种描述。
公设2
公设2:封闭量子系统的演化可用酉变换来描述。也就是说,系统在
t
1
t_1
t1时所处的状态
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩和在
t
2
t_2
t2时所处的状态
∣
ψ
′
⟩
\left | \psi' \right \rangle
∣ψ′⟩是通过一个仅与时间
t
1
t_1
t1和
t
2
t_2
t2有关的酉算子
U
U
U联系起来的。
∣
ψ
′
⟩
=
U
∣
ψ
⟩
(
2.84
)
\left | \psi' \right \rangle =U\left | \psi \right \rangle (2.84)
∣ψ′⟩=U∣ψ⟩(2.84)
- 量子力学不会告诉哪个酉算子描述了现实世界的量子动力学
- 酉算子:泡利矩阵、量子门、阿达玛门
- 公设2要求所描述的系统是封闭的,它与其他系统没有任何形式的相互作用。
- 公设2描述了一个封闭量子系统的量子态在两个不同时间是如何相关的。
公设2‘
公设2’:封闭量子系统中态的演化由薛定谔方程描述
i
ℏ
d
∣
ψ
⟩
d
t
=
H
∣
ψ
⟩
(
2.86
)
i \hbar \frac{d|\psi\rangle}{d t}=H|\psi\rangle(2.86)
iℏdtd∣ψ⟩=H∣ψ⟩(2.86)
-
ℏ \hbar ℏ是一个物理常数,被称为普朗克常数, ℏ \hbar ℏ经常置为1
-
H H H是一个称为封闭系统哈密顿量的固定厄米算子。
2.2.3 量子测量
当外部物理系统需要观察系统以了解系统内部在发生什么,这个观测作用使得系统不再封闭,系统不再遵循酉演化。公设3为描述量子系统的测量提供了一种手段。
公设3
公设3:量子测量由一组测量算子
{
M
m
}
\{M_m\}
{Mm}描述。这些算子作用在被测系统的状态空间上。指标
m
m
m表示在实验中可能出现的测量结果。如果在测量前量子系统的最新状态是
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩,那么测量结果是
m
m
m的概率为
p
(
m
)
=
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
(
2.92
)
p(m)=\left \langle \psi \right | M^{\dagger}_mM_m \left | \psi \right \rangle (2.92)
p(m)=⟨ψ∣Mm†Mm∣ψ⟩(2.92)
并且测量之后系统的状态为
M
m
∣
ψ
⟩
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
(
2.93
)
\frac{M_m\left | \psi \right \rangle }{\sqrt{\left \langle \psi \right | M^{\dagger}_mM_m \left | \psi \right \rangle} } (2.93)
⟨ψ∣Mm†Mm∣ψ⟩Mm∣ψ⟩(2.93)
测量算子满足完备性方程:
∑
m
M
m
†
M
m
=
I
(
2.94
)
\sum_{m} M^{\dagger}_mM_m=I(2.94)
m∑Mm†Mm=I(2.94)
完备性方程表达了概率加起来是1的事实:
1
=
∑
m
p
(
m
)
=
∑
m
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
(
2.95
)
1=\sum_{m}p(m)=\sum_{m}\left \langle \psi \right | M^{\dagger}_mM_m \left | \psi \right \rangle(2.95)
1=m∑p(m)=m∑⟨ψ∣Mm†Mm∣ψ⟩(2.95)
这个方程对所有的
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩都成立并且等价于完备性方程。
- 它给出了描述测量统计的规则,即分别得到不同测量结果的概率
- 它给出了描述测量之后系统状态的规则
例子:在计算基下测量单量子比特
在单量子比特上的测量有两个测量结果,由测量算子 M 0 = ∣ 0 ⟩ ⟨ 0 ∣ M_0=\left | 0 \right \rangle \left \langle 0 \right | M0=∣0⟩⟨0∣和 M 1 = ∣ 1 ⟩ ⟨ 1 ∣ M_1=\left | 1 \right \rangle \left \langle 1 \right | M1=∣1⟩⟨1∣决定。
-
每个测量算子都是厄米的,并且 M 0 2 = M 0 , M 1 2 = M 1 M_0^2=M_0,M_1^2=M_1 M02=M0,M12=M1。
-
每个测量算子满足完备性关系, I = M 0 † M 0 + M 1 † M 1 = M 0 + M 1 I=M^{\dagger}_0M_0+M^{\dagger}_1M_1=M_0+M_1 I=M0†M0+M1†M1=M0+M1。
假设被测的状态是
∣
ψ
⟩
=
a
∣
0
⟩
+
b
∣
1
⟩
\left | \psi \right \rangle =a\left | 0 \right \rangle +b\left | 1 \right \rangle
∣ψ⟩=a∣0⟩+b∣1⟩,那么得到测量结果为0的概率是
p
(
0
)
=
⟨
ψ
∣
M
0
†
M
0
∣
ψ
⟩
=
⟨
ψ
∣
M
0
∣
ψ
⟩
=
∣
a
∣
2
(
2.96
)
p(0)=\left \langle \psi \right | M^{\dagger}_0M_0 \left | \psi \right \rangle=\left \langle \psi \right | M_0 \left | \psi \right \rangle=|a|^2(2.96)
p(0)=⟨ψ∣M0†M0∣ψ⟩=⟨ψ∣M0∣ψ⟩=∣a∣2(2.96)
测量结果为1的概率是
p
(
1
)
=
∣
b
∣
2
p(1)=|b|^2
p(1)=∣b∣2。这两种情况下测量之后的状态是
M
0
∣
ψ
⟩
∣
a
∣
=
∣
0
⟩
⟨
0
∣
(
a
∣
0
⟩
+
b
∣
1
⟩
)
∣
a
∣
=
a
⟨
0
∣
0
⟩
∣
0
⟩
∣
a
∣
=
a
∣
a
∣
∣
0
⟩
M
1
∣
ψ
⟩
∣
b
∣
=
∣
1
⟩
⟨
1
∣
(
a
∣
0
⟩
+
b
∣
1
⟩
)
∣
b
∣
=
b
⟨
1
∣
1
⟩
∣
1
⟩
∣
b
∣
=
b
∣
b
∣
∣
1
⟩
\begin{matrix} \frac{M_0\left | \psi \right \rangle }{|a|}=\frac{\left | 0 \right \rangle \left \langle 0\right | (a\left | 0 \right \rangle +b\left | 1 \right \rangle)}{|a|}=\frac{a\left \langle 0 | 0 \right \rangle \left | 0 \right \rangle }{|a|} =\frac{a}{|a|}\left | 0 \right \rangle \\ \frac{M_1\left | \psi \right \rangle }{|b|}=\frac{\left | 1 \right \rangle \left \langle 1\right | (a\left | 0 \right \rangle +b\left | 1 \right \rangle)}{|b|}=\frac{b\left \langle 1 | 1 \right \rangle \left | 1 \right \rangle }{|b|} =\frac{b}{|b|}\left | 1 \right \rangle \end{matrix}
∣a∣M0∣ψ⟩=∣a∣∣0⟩⟨0∣(a∣0⟩+b∣1⟩)=∣a∣a⟨0∣0⟩∣0⟩=∣a∣a∣0⟩∣b∣M1∣ψ⟩=∣b∣∣1⟩⟨1∣(a∣0⟩+b∣1⟩)=∣b∣b⟨1∣1⟩∣1⟩=∣b∣b∣1⟩
因为
a
/
∣
a
∣
a/|a|
a/∣a∣模为1的倍数可以忽略,所以测量之后的有效状态就是
∣
0
⟩
\left | 0 \right \rangle
∣0⟩和
∣
1
⟩
\left | 1 \right \rangle
∣1⟩。
2.2.4 区分量子态
本节展示了公设3的一个重要应用是区分量子态。
在经典世界中,研究对象的不同物理态至少在原则上是可区分的。在量子力学中非正交量子态不可区分。
利用游戏说明:Alice从双方都知道的一组态中选择一个态 ∣ ψ i ⟩ ( 1 ≤ i ≤ n ) \left | \psi_i \right \rangle (1\le i\le n) ∣ψi⟩(1≤i≤n),她把态 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩交给Bob,Bob得任务是找出Alice给他的状态的指标 i i i。
区分正交态
假设态 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩是正交的,区分的步骤如下:
- 对每个可能指标定义一个测量算子 M i ≡ ∣ ψ i ⟩ ⟨ ψ i ∣ M_i\equiv \left | \psi_i \right \rangle \left \langle \psi_i \right | Mi≡∣ψi⟩⟨ψi∣;
- 再定义一个测量算子 M 0 M_0 M0,它是正算子 I − ∑ i ≠ 0 ∣ ψ i ⟩ ⟨ ψ i ∣ I- {\textstyle \sum_{i\ne 0}}\left | \psi_i \right \rangle \left \langle \psi_i \right | I−∑i=0∣ψi⟩⟨ψi∣的非负平方根。以上算子满足完备性关系;
- 如果状态是 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩,那么 p ( i ) = ⟨ ψ i ∣ M i ∣ ψ i ⟩ = 1 p(i)=\left \langle \psi_i \right | M_i\left | \psi_i \right \rangle =1 p(i)=⟨ψi∣Mi∣ψi⟩=1,也就是测量结果一定是 i i i;
- 完成可靠区分正交态 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩。
区分非正交态
如果态 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩是非正交的,则证明没有量子测量能够区分这些态。Bob不能区分非正交态 ∣ ψ 1 ⟩ \left | \psi_1 \right \rangle ∣ψ1⟩和 ∣ ψ 2 ⟩ \left | \psi_2 \right \rangle ∣ψ2⟩的关键在于 ∣ ψ 2 ⟩ \left | \psi_2 \right \rangle ∣ψ2⟩有平行于 ∣ ψ 1 ⟩ \left | \psi_1 \right \rangle ∣ψ1⟩的非零分量和垂直于 ∣ ψ 1 ⟩ \left | \psi_1 \right \rangle ∣ψ1⟩的分量。
利用反证法的完整证明过程在专题2.3。
2.2.5 投影测量
本节解释了公设3的一个特殊情况,投影测量。
定义
投影测量:一个投影测量由观测系统状态空间上的一个可观测量
M
M
M来描述,
M
M
M是一个厄米算子。这个可观测量有谱分解
M
=
∑
m
m
P
m
(
2.102
)
M=\sum_{m}mP_m (2.102)
M=m∑mPm(2.102)
其中
P
m
P_m
Pm是到
M
M
M的特征值为
m
m
m的本征空间上的投影。测量的可能结果对应于可观测量的特征值
m
m
m。当测量状态为
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩时,得到结果为
m
m
m的概率是
p
(
m
)
=
⟨
ψ
∣
P
m
∣
ψ
⟩
(
2.103
)
p(m)=\left \langle \psi \right | P_m\left | \psi \right \rangle (2.103)
p(m)=⟨ψ∣Pm∣ψ⟩(2.103)
给定测量结果
m
m
m,测量后量子状态立即变成
P
m
∣
ψ
⟩
P
(
m
)
(
2.104
)
\frac{P_m\left | \psi \right \rangle }{\sqrt{P(m)} } (2.104)
P(m)Pm∣ψ⟩(2.104)
投影测量的测量算子不仅要满足完备性关系
∑
m
M
m
†
M
m
=
I
\sum_{m} M^{\dagger}_mM_m=I
∑mMm†Mm=I,也要满足
M
m
M_m
Mm是正交投影算子,即
M
m
M_m
Mm是厄米的,并且
M
m
M
m
′
=
δ
m
m
′
M
m
M_mM_{m'}=\delta _{mm'}M_m
MmMm′=δmm′Mm。
测量算子的性质
-
很容易计算投影测量的平均值。根据定义,测量的平均值是
E ( M ) = ∑ m m p ( m ) = ∑ m m ⟨ ψ ∣ P m ∣ ψ ⟩ = ⟨ ψ ∣ ( ∑ m m P m ) ∣ ψ ⟩ = ⟨ ψ ∣ M ∣ ψ ⟩ \begin{aligned} \mathbf{E}(M) & =\sum_{m} m p(m) \\ & =\sum_{m} m\left\langle\psi\left|P_{m}\right| \psi\right\rangle \\ & =\left \langle \psi \right | \left ( \sum_{m} m P_{m} \right ) \left | \psi \right \rangle \\ & =\langle\psi|M| \psi\rangle \end{aligned} E(M)=m∑mp(m)=m∑m⟨ψ∣Pm∣ψ⟩=⟨ψ∣(m∑mPm)∣ψ⟩=⟨ψ∣M∣ψ⟩
可观测量 M M M的平均值一般写成 ⟨ M ⟩ ≡ ⟨ ψ ∣ M ∣ ψ ⟩ \langle M\rangle \equiv\langle\psi|M| \psi\rangle ⟨M⟩≡⟨ψ∣M∣ψ⟩ -
由平均值推导出标准差表示为
[ Δ ( M ) ] 2 = ⟨ ( M − ⟨ M ⟩ ) 2 ⟩ = ⟨ M 2 ⟩ − ⟨ M ⟩ 2 \begin{aligned} {[\Delta(M)]^{2} } & =\left\langle(M-\langle M\rangle)^{2}\right\rangle \\ & =\left\langle M^{2}\right\rangle-\langle M\rangle^{2} \end{aligned} [Δ(M)]2=⟨(M−⟨M⟩)2⟩=⟨M2⟩−⟨M⟩2
标准差是推导出海森伯不确定性原理的一种方法。
两个广泛说法
- 一组满足关系 ∑ m P m = I \sum_m P_m=I ∑mPm=I和 P m P m ′ = δ m m ′ P m P_mP_{m'}=\delta_{mm'}P_m PmPm′=δmm′Pm的正交投影算子 P m P_m Pm而不是给出一个描述投影算子的可观测量 M m M_m Mm。这种说法等价于相应观测量 M = ∑ m m P m M=\sum_mmP_m M=∑mmPm。
- 在基 ∣ m ⟩ \left | m \right \rangle ∣m⟩下测量,其中 ∣ m ⟩ \left | m \right \rangle ∣m⟩是一组标准正交基,它是指在投影算子 P m = ∣ m ⟩ ⟨ m ∣ P_m=\left | m \right \rangle \left \langle m \right | Pm=∣m⟩⟨m∣下的投影测量。
2.2.6 POVM测量
本节解释了公设3的另一个特殊情况。
某些应用对测量之后系统的状态不感兴趣,主要关心的是不同测量结果出现的概率,例如仅在结束时对系统测量一次的实验。那么POVM适合于对测量结果的分析。
POVM元素
假设在状态为
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩的量子系统中执行由测量算子
M
m
M_m
Mm描述的测量。则得到结果
m
m
m的概率由
p
(
m
)
=
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
p(m)=\left \langle \psi \right | M^{\dagger}_mM_m \left | \psi \right \rangle
p(m)=⟨ψ∣Mm†Mm∣ψ⟩给出。假设定义
E
m
=
M
m
†
M
m
(
2.117
)
E_m=M^{\dagger}_mM_m (2.117)
Em=Mm†Mm(2.117)
根据公设3可以得出
E
m
E_m
Em是一个满足
∑
m
E
m
=
I
\sum_mE_m=I
∑mEm=I和
p
(
m
)
=
⟨
ψ
∣
E
m
∣
ψ
⟩
p(m)=\left \langle \psi \right | E_m \left | \psi \right \rangle
p(m)=⟨ψ∣Em∣ψ⟩的正算子。
- 算子 E m E_m Em的集合足以确定不同测量结果的概率。
- 算子 E m E_m Em被称为与测量相关联的POVM元素。
- 完整的集合 { E m } \{E_m\} {Em}称为一个POVM。
POVM示例。考虑由测量算子 P m P_m Pm描述的投影测量,其中 P m P_m Pm是满足 P m P m ′ = δ m m ′ P m P_mP_{m'}=\delta_{mm'}P_m PmPm′=δmm′Pm和 ∑ m P m = I \sum_mP_m=I ∑mPm=I的投影算子。在这个实例中,所有POVM元与测量算子本身相同,因为 E m = P m † P m = P m E_m=P^{\dagger}_mP_m=P_m Em=Pm†Pm=Pm。
存在一组测量算子 M m M_m Mm来定义由POVM { E m } \{E_m\} {Em}描述的测量。定义 M m ≡ E m M_m\equiv \sqrt{E_m} Mm≡Em,则 ∑ m M m † M m = ∑ m E m = I \sum_mM^{\dagger}_mM_m=\sum_mE_m=I ∑mMm†Mm=∑mEm=I。因此集合 { M m } \{M_m\} {Mm}描述了使用POVM { E m } \{E_m\} {Em}的测量。
POVM应用
假设Alice给Bob一个量子比特,其状态处于
∣
ψ
1
⟩
=
∣
0
⟩
\left | \psi_1 \right \rangle= \left |0 \right \rangle
∣ψ1⟩=∣0⟩或
∣
ψ
2
⟩
=
(
∣
0
⟩
+
∣
1
⟩
)
/
2
\left | \psi _2 \right \rangle =(\left | 0 \right \rangle +\left | 1 \right \rangle )/\sqrt{2}
∣ψ2⟩=(∣0⟩+∣1⟩)/2。根据2.2.4节可得,Bob不可逆完全可靠的确定给他的状态处于
∣
ψ
1
⟩
\left | \psi_1 \right \rangle
∣ψ1⟩还是
∣
ψ
2
⟩
\left | \psi_2 \right \rangle
∣ψ2⟩。利用POVM测量可以在某些时候区分状态并且不误判。考虑一个由三个元素构成的POVM
E
1
≡
2
1
+
2
∣
1
⟩
⟨
1
∣
E
2
≡
2
1
+
2
(
∣
0
⟩
−
∣
1
⟩
)
(
⟨
0
∣
−
⟨
1
∣
)
2
E
3
≡
I
−
E
1
−
E
2
\begin{array}{l} E_{1} \equiv \frac{\sqrt{2}}{1+\sqrt{2}}|1\rangle\langle 1|\\ E_{2} \equiv \frac{\sqrt{2}}{1+\sqrt{2}} \frac{(|0\rangle-|1\rangle)(\langle 0|-\langle 1|)}{2}\\ E_{3} \equiv I-E_{1}-E_{2} \end{array}
E1≡1+22∣1⟩⟨1∣E2≡1+222(∣0⟩−∣1⟩)(⟨0∣−⟨1∣)E3≡I−E1−E2
可以验证这些正算子满足完备性关系
∑
m
E
m
=
I
\sum_mE_m=I
∑mEm=I,因此它们是一组合格的POVM。
- 假设Bob收到的态是 ∣ ψ 1 ⟩ \left|\psi_{1}\right\rangle ∣ψ1⟩,他用POVM { E 1 , E 2 , E 3 } \{E_1,E_2,E_3\} {E1,E2,E3}来进行测量。他观测到结果 E 1 E_1 E1的概率是0,因为 E 1 E_1 E1的选取保证了 ⟨ ψ 1 ∣ E 1 ∣ ψ 1 ⟩ = 0 \left \langle \psi_1 \right | E_1 \left | \psi_1 \right \rangle=0 ⟨ψ1∣E1∣ψ1⟩=0。因此,如果Bob测量的结果是 E 1 E_1 E1,那么Bob可以说他收到的态一定是 ∣ ψ 2 ⟩ \left|\psi_{2}\right\rangle ∣ψ2⟩。
- 同理可得,如果测量结果是 E 2 E_2 E2,那么Bob收到的态一定是 ∣ ψ 1 ⟩ \left|\psi_{1}\right\rangle ∣ψ1⟩。
- 当Bob的测量结果是 E 3 E_3 E3,他无法区分收到的是哪个态。
但是关键在于Bob永远不会误判他收到的态。
2.2.7 相位
定义1:全局相位
考虑状态 e i θ ∣ ψ ⟩ e^{i\theta }\left | \psi \right \rangle eiθ∣ψ⟩,其中 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩是状态向量, θ \theta θ是一个实数。除了全局相位因子 e i θ e^{i\theta } eiθ,状态 e i θ ∣ ψ ⟩ e^{i\theta }\left | \psi \right \rangle eiθ∣ψ⟩等于 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩。对这两种状态的测量统计结果是相同的。
假设 M m M_m Mm是一个与某个量子测量相关的测量算子,并注意到出现结果 m m m的概率分别为 ⟨ ψ ∣ M m † M m ∣ ψ ⟩ \left \langle \psi \right | M^{\dagger}_mM_m \left | \psi \right \rangle ⟨ψ∣Mm†Mm∣ψ⟩和 ⟨ ψ ∣ e − i θ M m † M m e i θ ∣ ψ ⟩ = ⟨ ψ ∣ M m † M m ∣ ψ ⟩ \left \langle \psi \right |e^{-i\theta } M^{\dagger}_mM_me^{i\theta } \left | \psi \right \rangle=\left \langle \psi \right | M^{\dagger}_mM_m \left | \psi \right \rangle ⟨ψ∣e−iθMm†Mmeiθ∣ψ⟩=⟨ψ∣Mm†Mm∣ψ⟩。因此,从观测的角度,这两个状态是相同的,我们可以忽略全局相位因子。
定义2:相对相位
考虑状态 ( ∣ 0 ⟩ + ∣ 1 ⟩ ) / 2 (\left | 0 \right \rangle +\left | 1 \right \rangle )/\sqrt{2} (∣0⟩+∣1⟩)/2和 ( ∣ 0 ⟩ − ∣ 1 ⟩ ) / 2 (\left | 0 \right \rangle -\left | 1 \right \rangle )/\sqrt{2} (∣0⟩−∣1⟩)/2。第一个状态中 ∣ 1 ⟩ \left |1 \right \rangle ∣1⟩的振幅为 1 / 2 1/\sqrt{2} 1/2,第二个状态中振幅为 − 1 / 2 -1/\sqrt{2} −1/2。在每一种情况下,振幅的大小是相同的,但它们的符号不同。
更一般的,如果存在实数 θ \theta θ,使得 a = exp ( i θ ) b a=\exp(i\theta )b a=exp(iθ)b,那么称两个振幅 a a a和 b b b相差一个相对相位。如果两个状态的每个振幅都由一个相位因子相联系,那么这两个状态在该基下相差一个相对相位。
2.2.8 复合系统
复合系统是一个由两个或多个不同物理系统组成的量子系统。本节的公设描述了复合系统的状态空间是如何由分系统的状态空间构成的。
公设4
公设4:复合物理系统的状态空间是分物理系统的状态空间的张量积。此外,如果系统编号为从 1 1 1到 n n n,且系统 i i i的状态被准备为 ∣ ψ i ⟩ \left | \psi_i \right \rangle ∣ψi⟩,则整个系统的联合状态是 ∣ ψ 1 ⟩ ⊗ ∣ ψ 2 ⟩ ⊗ . . . ⊗ ∣ ψ n ⟩ \left | \psi_1 \right \rangle \otimes \left | \psi_2 \right \rangle \otimes ...\otimes \left | \psi_n \right \rangle ∣ψ1⟩⊗∣ψ2⟩⊗...⊗∣ψn⟩。
利用公设4证明
利用复合系统证明投影测量和酉演化可以实现一般测量。
假设有一个状态空间为 Q Q Q的量子系统,在系统 Q Q Q上执行由测量算子 M m M_m Mm定义的测量。引入一个状态空间为 M M M的辅助系统,该系统具有与我们希望实现的测量的可能结果一一对应的正交基。
令
∣
0
⟩
\left | 0 \right \rangle
∣0⟩为
M
M
M的任一固定状态,在
Q
Q
Q中状态
∣
ψ
⟩
\left |\psi \right \rangle
∣ψ⟩和状态
∣
0
⟩
\left | 0 \right \rangle
∣0⟩的乘积
∣
ψ
⟩
∣
0
⟩
\left | \psi \right \rangle \left | 0 \right \rangle
∣ψ⟩∣0⟩上定义一个酉算子
U
U
U如下:
U
∣
ψ
⟩
∣
0
⟩
≡
∑
m
M
m
∣
ψ
⟩
∣
m
⟩
(
2.122
)
U\left | \psi \right \rangle \left | 0 \right \rangle \equiv \sum_mM_m\left | \psi \right \rangle \left | m \right \rangle (2.122)
U∣ψ⟩∣0⟩≡m∑Mm∣ψ⟩∣m⟩(2.122)
利用状态集
∣
m
⟩
\left |m \right \rangle
∣m⟩的标准正交性和完备性关系
∑
m
M
m
†
M
m
=
I
\sum_{m} M^{\dagger}_mM_m=I
∑mMm†Mm=I,可以得到
U
U
U保持形如
∣
ψ
⟩
∣
0
⟩
\left | \psi \right \rangle \left | 0 \right \rangle
∣ψ⟩∣0⟩的状态之间的内积,即
⟨
φ
∣
⟨
0
∣
U
†
U
∣
ψ
⟩
∣
0
⟩
=
∑
m
,
m
′
⟨
φ
∣
M
m
†
M
m
′
∣
ψ
⟩
⟨
m
∣
m
′
⟩
=
∑
m
⟨
φ
∣
M
m
†
M
m
∣
ψ
⟩
=
⟨
φ
∣
ψ
⟩
\begin{aligned} \left\langle\varphi\left|\left\langle 0\left|U^{\dagger} U\right| \psi\right\rangle\right| 0\right\rangle & =\sum_{m, m^{\prime}}\left\langle\varphi\left|M_{m}^{\dagger} M_{m^{\prime}}\right| \psi\right\rangle\left\langle m \mid m^{\prime}\right\rangle \\ & =\sum_{m}\left\langle\varphi\left|M_{m}^{\dagger} M_{m}\right| \psi\right\rangle \\ & =\langle\varphi \mid \psi\rangle \end{aligned}
⟨φ
⟨0
U†U
ψ⟩
0⟩=m,m′∑⟨φ
Mm†Mm′
ψ⟩⟨m∣m′⟩=m∑⟨φ
Mm†Mm
ψ⟩=⟨φ∣ψ⟩
在
U
U
U作用在
∣
ψ
⟩
∣
0
⟩
\left | \psi \right \rangle \left | 0 \right \rangle
∣ψ⟩∣0⟩之后,假设在两个系统上进行由投影算子
P
m
≡
I
Q
⊗
∣
m
⟩
⟨
m
∣
P_{m} \equiv I_{Q} \otimes|m\rangle\langle m|
Pm≡IQ⊗∣m⟩⟨m∣描述的投影测量,结果
m
m
m出现的概率是
p
(
m
)
=
⟨
ψ
∣
⟨
0
∣
U
†
P
m
U
∣
ψ
⟩
∣
0
⟩
=
∑
m
′
,
m
′
′
⟨
ψ
∣
M
m
′
†
⟨
m
′
∣
(
I
Q
⊗
∣
m
⟩
⟨
m
∣
)
M
m
′
′
∣
ψ
⟩
∣
m
′
′
⟩
=
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
(
2.129
)
\begin{aligned} p(m) & =\left\langle\psi\left|\left\langle 0\left|U^{\dagger} P_{m} U\right| \psi\right\rangle\right| 0\right\rangle \\ & =\sum_{m^{\prime}, m^{\prime \prime}}\left \langle \psi \right |M_{m^{\prime}}^{\dagger}\left\langle m^{\prime}\left|\left(I_{Q} \otimes|m\rangle\langle m|\right) M_{m^{\prime \prime}}\right| \psi\right\rangle\left |m'' \right \rangle \\ & =\left\langle\psi\left|M_{m}^{\dagger} M_{m}\right| \psi\right\rangle(2.129) \end{aligned}
p(m)=⟨ψ
⟨0
U†PmU
ψ⟩
0⟩=m′,m′′∑⟨ψ∣Mm′†⟨m′∣(IQ⊗∣m⟩⟨m∣)Mm′′∣ψ⟩∣m′′⟩=⟨ψ
Mm†Mm
ψ⟩(2.129)
在结果
m
m
m出现的条件下,联合系统
Q
M
QM
QM在测量后的状态是
P
m
U
∣
ψ
⟩
∣
0
⟩
⟨
ψ
∣
U
†
P
m
U
∣
ψ
⟩
=
M
m
∣
ψ
⟩
∣
m
⟩
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
(
2.130
)
\frac{P_{m} U|\psi\rangle|0\rangle}{\sqrt{\left\langle\psi\left|U^{\dagger} P_{m} U\right| \psi\right\rangle}}=\frac{M_{m}|\psi\rangle|m\rangle}{\sqrt{\left \langle \psi \right | M_{m}^{\dagger} M_{m}\left | \psi \right \rangle }}(2.130)
⟨ψ∣U†PmU∣ψ⟩PmU∣ψ⟩∣0⟩=⟨ψ∣Mm†Mm∣ψ⟩Mm∣ψ⟩∣m⟩(2.130)
系统
M
M
M的测量后状态为
∣
m
⟩
|m\rangle
∣m⟩,且系统
Q
Q
Q的状态为
M
m
∣
ψ
⟩
⟨
ψ
∣
M
m
†
M
m
∣
ψ
⟩
(
2.131
)
\frac{M_{m}|\psi\rangle}{\sqrt{\left \langle \psi \right | M_{m}^{\dagger} M_{m}\left | \psi \right \rangle }}(2.131)
⟨ψ∣Mm†Mm∣ψ⟩Mm∣ψ⟩(2.131)
利用公设4定义纠缠
考虑两量子比特态
∣
ψ
⟩
=
∣
00
⟩
+
∣
11
⟩
2
\left | \psi \right \rangle =\frac{\left | 00 \right \rangle +\left | 11 \right \rangle }{\sqrt{2} }
∣ψ⟩=2∣00⟩+∣11⟩
这个状态不存在单量子比特态
∣
a
⟩
\left | a \right \rangle
∣a⟩和
∣
b
⟩
\left | b \right \rangle
∣b⟩,使得
∣
ψ
⟩
≠
∣
a
⟩
∣
b
⟩
\left | \psi \right \rangle \ne\left | a \right \rangle \left | b \right \rangle
∣ψ⟩=∣a⟩∣b⟩。
不能写成其分系统状态的乘积的复合系统的状态是一个纠缠态。
2.3应用:超密编码
超密编码是关于纠缠量子态带来的效应的例子。
超密编码涉及两方,Alice和Bob,他们彼此相距很远。他们的目标是将一些经典信息从Alice发送到Bob。假设Alice拥有两个经典比特的信息要发送给Bob,但只允许向Bob发送一个量子比特。利用超密编码可以实现:
- 假设Alice和Bob最初共享一对纠缠态(2.133)的量子比特,
∣ ψ ⟩ = ∣ 00 ⟩ + ∣ 11 ⟩ 2 ( 2.133 ) \left | \psi \right \rangle =\frac{\left | 00 \right \rangle +\left | 11 \right \rangle }{\sqrt{2} }(2.133) ∣ψ⟩=2∣00⟩+∣11⟩(2.133)
- 最初,Alice拥有第一个量子比特,Bob拥有第二个量子比特,如图2.3。 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩是固定状态,由某个第三方提前制备并把其中一个量子比特发送给Alice,另一个发送给Bob。
-
通过将拥有的单个量子比特发送给Bob,Alice可以将两位景点信息传递给Bob。
- 如果她想发送比特串"00"给Bob,那么不需要对她的量子比特做什么
- 如果她想发送比特串"01"给Bob,那么将相位翻转 Z Z Z应用于她的量子比特
- 如果她想发送比特串"10"给Bob,那么将量子门 X X X应用于她的量子比特
- 如果她想发送比特串"11"给Bob,那么将 i Y iY iY门应用于她的量子比特
-
最后结果为以下4个状态:
00 : ∣ ψ ⟩ → ∣ 00 ⟩ + ∣ 11 ⟩ 2 01 : ∣ ψ ⟩ → ∣ 00 ⟩ − ∣ 11 ⟩ 2 10 : ∣ ψ ⟩ → ∣ 10 ⟩ + ∣ 01 ⟩ 2 11 : ∣ ψ ⟩ → ∣ 01 ⟩ − ∣ 10 ⟩ 2 \begin{array}{l} 00:|\psi\rangle \rightarrow \frac{|00\rangle+|11\rangle}{\sqrt{2}} \\ 01:|\psi\rangle \rightarrow \frac{|00\rangle-|11\rangle}{\sqrt{2}} \\ 10:|\psi\rangle \rightarrow \frac{|10\rangle+|01\rangle}{\sqrt{2}} \\ 11:|\psi\rangle \rightarrow \frac{|01\rangle-|10\rangle}{\sqrt{2}} \end{array} 00:∣ψ⟩→2∣00⟩+∣11⟩01:∣ψ⟩→2∣00⟩−∣11⟩10:∣ψ⟩→2∣10⟩+∣01⟩11:∣ψ⟩→2∣01⟩−∣10⟩
- Alice把她的比特发送给Bob后,Bob通过在贝尔基上进行一次测量,Bob可以确定Alice发送的是4个可能的比特串中的哪一个。
2.4 密度算子
除了用状态向量描述量子力学,本节使用密度算子或密度矩阵的工具描述,两种方法在数学上等价,但后者更方便。
2.4.1 量子状态的系综
定义1:密度算子
假设一个量子系统以概率
p
i
p_i
pi处于多个状态
∣
ψ
i
⟩
\left | \psi_i \right \rangle
∣ψi⟩之一,其中
i
i
i是一个指标,则
{
p
i
,
∣
ψ
i
⟩
}
\{p_i,\left | \psi_i \right \rangle \}
{pi,∣ψi⟩}称为一个纯态系综。系统的密度算子定义为
ρ
≡
∑
i
p
i
∣
ψ
i
⟩
⟨
ψ
i
∣
(
2.138
)
\rho \equiv \sum_ip_i\left | \psi_i \right \rangle \left \langle \psi_i \right | (2.138)
ρ≡i∑pi∣ψi⟩⟨ψi∣(2.138)
密度算子也称为密度矩阵。
- 量子力学的所有公设都可以用密度算子重新表述。
密度算子的演化
假设封闭量子系统的演化是由酉算子
U
U
U描述的,如果系统初态为
∣
ψ
i
⟩
\left | \psi_i \right \rangle
∣ψi⟩的概率为
p
i
p_i
pi,那么演化之后,系统将以概率
p
i
p_i
pi处于状态
U
∣
ψ
i
⟩
U\left | \psi_i \right \rangle
U∣ψi⟩。则密度算子的演化描述为:
ρ
≡
∑
i
p
i
∣
ψ
i
⟩
⟨
ψ
i
∣
→
U
∑
i
p
i
U
∣
ψ
i
⟩
⟨
ψ
i
∣
U
†
=
U
ρ
U
†
(
2.139
)
\rho\equiv \sum_{i} p_{i}\left | \psi_i \right \rangle \left \langle \psi_i \right | \xrightarrow{U} \sum_{i} p_{i} U \left | \psi_i \right \rangle \left\langle\psi_{i}\right| U^{\dagger}=U \rho U^{\dagger}(2.139)
ρ≡i∑pi∣ψi⟩⟨ψi∣Ui∑piU∣ψi⟩⟨ψi∣U†=UρU†(2.139)
假设我们进行由测量算子
M
m
M_{m}
Mm描述的测量,如果初态为
∣
ψ
i
⟩
\left | \psi_i \right \rangle
∣ψi⟩,那么由式(2.61)可得:
p
(
m
∣
i
)
=
⟨
ψ
i
∣
M
m
†
M
m
∣
ψ
i
⟩
=
tr
(
M
m
†
M
m
∣
ψ
i
⟩
⟨
ψ
i
∣
)
(
2.140
)
p(m|i)=\left\langle\psi_{i}\left|M_{m}^{\dagger} M_{m}\right| \psi_{i}\right\rangle=\operatorname{tr}\left(M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)(2.140)
p(m∣i)=⟨ψi
Mm†Mm
ψi⟩=tr(Mm†Mm∣ψi⟩⟨ψi∣)(2.140)
由全概率公式可得结果为
m
m
m的概率是
p
(
m
)
=
∑
i
p
(
m
∣
i
)
p
i
=
∑
i
p
i
tr
(
M
m
†
M
m
∣
ψ
i
⟩
⟨
ψ
i
∣
)
=
tr
(
M
m
†
M
m
ρ
)
(
2.143
)
\begin{aligned} p(m) & =\sum_{i} p(m \mid i) p_{i} \\ & =\sum_{i} p_{i} \operatorname{tr}\left(M_{m}^{\dagger} M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right) \\ & =\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)(2.143) \end{aligned}
p(m)=i∑p(m∣i)pi=i∑pitr(Mm†Mm∣ψi⟩⟨ψi∣)=tr(Mm†Mmρ)(2.143)
如果初始状态为
∣
ψ
i
⟩
\left | \psi_i \right \rangle
∣ψi⟩,根据公设3,则获得结果
m
m
m后的状态为
∣
ψ
i
m
⟩
=
M
m
∣
ψ
i
⟩
⟨
ψ
i
∣
M
m
†
M
m
∣
ψ
i
⟩
(
2.144
)
\left|\psi_{i}^{m}\right\rangle=\frac{M_{m}\left|\psi_{i}\right\rangle}{\sqrt{\left \langle \psi_i \right |M_{m}^{\dagger} M_{m} \left | \psi_i \right \rangle }}(2.144)
∣ψim⟩=⟨ψi∣Mm†Mm∣ψi⟩Mm∣ψi⟩(2.144)
因此,经过一个产生结果
m
m
m的测量之后,得到了以概率为
p
(
i
∣
m
)
p(i|m)
p(i∣m)处于状态
∣
ψ
i
m
⟩
\left|\psi_{i}^{m}\right\rangle
∣ψim⟩的状态系综。相应的密度算子
ρ
m
\rho_m
ρm是
ρ
m
=
∑
i
p
(
i
∣
m
)
∣
ψ
i
m
⟩
⟨
ψ
i
m
∣
=
∑
i
p
(
i
∣
m
)
M
m
∣
ψ
i
⟩
⟨
ψ
i
∣
M
m
†
⟨
ψ
i
∣
M
m
†
M
m
∣
ψ
i
⟩
(
2.145
)
\rho_{m}=\sum_{i} p(i \mid m)\left|\psi_{i}^{m}\right\rangle\left\langle\psi_{i}^{m}\right|=\sum_{i} p(i| m) \frac{M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| M_{m}^{\dagger}}{\left \langle \psi_i \right |M_{m}^{\dagger} M_{m} \left | \psi_i \right \rangle }(2.145)
ρm=i∑p(i∣m)∣ψim⟩⟨ψim∣=i∑p(i∣m)⟨ψi∣Mm†Mm∣ψi⟩Mm∣ψi⟩⟨ψi∣Mm†(2.145)
其中,
p
(
i
∣
m
)
=
p
(
m
,
i
)
/
p
(
m
)
=
p
(
m
∣
i
)
p
i
/
p
(
m
)
p(i| m)=p(m,i) / p(m)=p(m |i) p_{i} / p(m)
p(i∣m)=p(m,i)/p(m)=p(m∣i)pi/p(m),得到:
ρ
m
=
∑
i
p
i
M
m
∣
ψ
i
⟩
⟨
ψ
i
∣
M
m
†
tr
(
M
m
†
M
m
ρ
)
=
M
m
ρ
M
m
†
tr
(
M
m
†
M
m
ρ
)
(
2.147
)
\begin{aligned} \rho_{m} & =\sum_{i} p_{i} \frac{M_{m}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)} \\ & =\frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)}(2.147) \end{aligned}
ρm=i∑pitr(Mm†Mmρ)Mm∣ψi⟩⟨ψi∣Mm†=tr(Mm†Mmρ)MmρMm†(2.147)
定义2:纯态和混合态
- 量子系统具有精确已知状态 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩称为处于纯态,密度算子是 ρ = ∣ ψ ⟩ ⟨ ψ ∣ \rho =\left | \psi \right \rangle \left \langle \psi \right | ρ=∣ψ⟩⟨ψ∣。
- 否则 ρ \rho ρ处于混合态,它是指处于 ρ \rho ρ的系综中不同纯态的混合。
- 判定:纯态满足 tr ( ρ 2 ) = 1 \text{tr} (\rho^2)=1 tr(ρ2)=1,而混合态满足 tr ( ρ 2 ) < 1 \text{tr} (\rho^2)<1 tr(ρ2)<1
密度矩阵描述系统
设量子状态以概率 p i p_i pi处于状态 ρ i \rho_i ρi,系统可以利用密度矩阵 ∑ i p i ρ i \sum_ip_i\rho_i ∑ipiρi来描述,证明如下。
设
ρ
i
\rho_i
ρi来自某个纯态的系综
{
p
i
j
,
∣
ψ
i
j
⟩
}
\{p_{ij},\left | \psi_{ij} \right \rangle \}
{pij,∣ψij⟩},其中
i
i
i是固定的,则处于状态
∣
ψ
i
j
⟩
\left | \psi_{ij} \right \rangle
∣ψij⟩的概率是
p
i
ρ
i
j
p_i\rho_{ij}
piρij,因此系统的密度矩阵式
ρ
=
∑
i
j
p
i
p
i
j
∣
ψ
i
j
⟩
⟨
ψ
i
j
∣
=
∑
i
p
i
ρ
i
,
(
2.149
)
\begin{aligned} \rho & =\sum_{i j} p_{i} p_{i j}\left|\psi_{i j}\right\rangle\left\langle\psi_{i j}\right| \\ & =\sum_{i} p_{i} \rho_{i}, \end{aligned}(2.149)
ρ=ij∑pipij∣ψij⟩⟨ψij∣=i∑piρi,(2.149)
其中
ρ
i
=
∑
j
p
i
j
∣
ψ
i
j
⟩
⟨
ψ
i
j
∣
\rho_{i}=\sum_{j} p_{i j}\left|\psi_{i j}\right\rangle\left\langle\psi_{i j}\right|
ρi=∑jpij∣ψij⟩⟨ψij∣,称
ρ
\rho
ρ为具有概率
p
i
p_i
pi的状态
ρ
i
\rho_i
ρi的混合。
混合的概念在量子噪声问题的分析中反复出现,噪声引入了不确定性。
exp. 由于某种原因测量结果
m
m
m的记录丢失了,则将以概率
p
(
m
)
p(m)
p(m)处于
ρ
m
\rho_m
ρm,但不再知道
m
m
m的实际值,这样系统的状态就将由以下密度算子描述:
ρ
=
∑
m
p
(
m
)
ρ
m
=
∑
m
tr
(
M
m
†
M
m
ρ
)
M
m
ρ
M
m
†
tr
(
M
m
†
M
m
ρ
)
=
∑
m
M
m
ρ
M
m
†
,
(
2.152
)
\begin{aligned} \rho & =\sum_{m} p(m) \rho_{m} \\ & =\sum_{m} \operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right) \frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)} \\ & =\sum_{m} M_{m} \rho M_{m}^{\dagger}, \end{aligned}(2.152)
ρ=m∑p(m)ρm=m∑tr(Mm†Mmρ)tr(Mm†Mmρ)MmρMm†=m∑MmρMm†,(2.152)
2.4.2 密度算子的一般性质
定理 2.5 密度算子的特征
算子 ρ \rho ρ是与某个系综 { p i , ∣ ψ i ⟩ } \{p_i,\left | \psi_i \right \rangle \} {pi,∣ψi⟩}相关的密度算子,当且仅当它满足以下条件:
- (迹条件) ρ \rho ρ的迹等于1
- (半正定条件) ρ \rho ρ是一个半正定算子
这个定理提供了密度算子本身固有的一个刻画:我们可以定义一个密度算子为迹等于1的半正定算子 ρ \rho ρ。
量子力学公设
公设1:任一孤立物理系统与该系统的状态空间相关联,它是一个带内积的复向量空间(即希尔伯特空间)。系统由作用在状态空间上的密度算子完全描述,这是一个迹为1的半正定算子 ρ \rho ρ。如果量子系统以概率 p i p_i pi处于状态 ρ i \rho_i ρi,则系统的密度算子为 ∑ i p i ρ i \sum_i p_i \rho_i ∑ipiρi。
公设2:封闭量子系统的演化由一个酉变换描述,即系统在时刻
t
1
t_1
t1的状态
ρ
\rho
ρ和时刻
t
2
t_2
t2的状态
ρ
′
\rho'
ρ′由一个仅依赖于时间
t
1
t_1
t1和
t
2
t_2
t2的酉算子
U
U
U联系:
ρ
′
=
U
ρ
U
†
(
2.158
)
\rho'=U\rho U^{\dagger}(2.158)
ρ′=UρU†(2.158)
公设3:量子测量由一组测量算子
{
M
m
}
\{M_m\}
{Mm}描述,这些算子作用在被测系统的状态空间上,指标
m
m
m指实验中可能出现的测量结果。如果量子系统在测量前的最后状态是
ρ
\rho
ρ,则得到结果
m
m
m的概率为
p
(
m
)
=
tr
(
M
m
†
M
m
ρ
)
(
2.159
)
p(m)=\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)(2.159)
p(m)=tr(Mm†Mmρ)(2.159)
并且测量后的系统状态为
M
m
ρ
M
m
†
tr
(
M
m
†
M
m
ρ
)
(
2.160
)
\frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)}(2.160)
tr(Mm†Mmρ)MmρMm†(2.160)
测量算子满足完备性方程:
∑
m
M
m
†
M
m
=
I
(
2.161
)
\sum_{m} M^{\dagger}_mM_m=I(2.161)
m∑Mm†Mm=I(2.161)
公设4:复合物理系统的状态空间是分物理系统状态空间的张量积。而且,如果系统
1
1
1到
n
n
n,其中系统
i
i
i处于状态
ρ
i
\rho_i
ρi,则全系统的联合状态是
ρ
1
⊗
ρ
2
⊗
.
.
.
⊗
ρ
n
\rho_1\otimes \rho_2\otimes...\otimes \rho_n
ρ1⊗ρ2⊗...⊗ρn。
密度算子方法两个较为突出的应用:
- 对状态未知的量子系统的描述
- 对复合系统的子系统的描述
定理 2.6 密度矩阵系综中的酉自由度
向量组
∣
ψ
~
i
⟩
| \tilde{\psi}_i \rangle
∣ψ~i⟩和
∣
φ
~
j
⟩
| \tilde{\varphi }_j \rangle
∣φ~j⟩生成相同的密度矩阵,当且仅当
∣
ψ
~
i
⟩
=
∑
j
u
i
j
∣
φ
~
j
⟩
(
2.166
)
| \tilde{\psi}_i \rangle=\sum_j u_{ij} | \tilde{\varphi }_j \rangle (2.166)
∣ψ~i⟩=j∑uij∣φ~j⟩(2.166)
其中
u
i
j
u_{ij}
uij是一个带指标
i
i
i和
j
j
j的复酉矩阵,并且在向量集合
∣
ψ
~
i
⟩
| \tilde{\psi}_i \rangle
∣ψ~i⟩和
∣
φ
~
j
⟩
| \tilde{\varphi }_j \rangle
∣φ~j⟩中向量较少的一个里面补充若干
0
0
0向量,使得两个集合的向量个数相等。
结论:
ρ
=
∑
i
p
i
∣
ψ
i
⟩
⟨
ψ
i
∣
=
∑
j
q
j
∣
φ
j
⟩
⟨
φ
j
∣
\rho =\sum_{i} p_{i}|\psi_{i}\rangle\langle\psi_{i}|=\sum_{j} q_{j}|\varphi _{j}\rangle\langle\varphi _{j}|
ρ=∑ipi∣ψi⟩⟨ψi∣=∑jqj∣φj⟩⟨φj∣对归一化状态集
∣
ψ
i
⟩
,
∣
φ
j
⟩
|\psi_{i}\rangle,|\varphi _{j}\rangle
∣ψi⟩,∣φj⟩与概率分布
p
i
p_i
pi和
q
j
q_j
qj成立,当且仅当
p
i
∣
ψ
i
⟩
=
∑
j
u
i
j
q
j
∣
φ
j
⟩
(
2.167
)
\sqrt{p_i}\left | \psi_i \right \rangle=\sum_{j} u_{ij}\sqrt{q_j}\left | \varphi _j \right \rangle (2.167)
pi∣ψi⟩=j∑uijqj∣φj⟩(2.167)
对于某个酉矩阵
u
i
j
u_{ij}
uij成立。
定理2.6刻画了产生一个给定的密度矩阵 ρ \rho ρ的系综 { p i , ∣ ψ i ⟩ } \{p_i,\left | \psi_i \right \rangle \} {pi,∣ψi⟩}所包含的自由度。
2.4.3 约化密度算子
约化密度算子的应用是作为描述复合量子系统子系统的工具。
定义1:约化密度算子和偏迹
假设有物理系统
A
A
A和
B
B
B,其状态由密度算子
ρ
A
B
\rho^{AB}
ρAB描述。对于系统
A
A
A,约化密度算子定义为:
ρ
A
≡
tr
B
(
ρ
A
B
)
(
2.177
)
\rho ^A\equiv \text{tr}_B(\rho ^{AB})(2.177)
ρA≡trB(ρAB)(2.177)
其中
tr
B
\text{tr}_B
trB是一个算子映射,称为在系统
B
B
B上的偏迹。偏迹定义为
tr
B
(
∣
a
1
⟩
⟨
a
2
∣
⊗
∣
b
1
⟩
⟨
b
2
∣
)
≡
∣
a
1
⟩
⟨
a
2
∣
tr
(
∣
b
1
⟩
⟨
b
2
∣
)
(
2.178
)
\text{tr}_B(| a_1 \rangle \langle a_2 | \otimes | b_1 \rangle \langle b_2 | )\equiv | a_1 \rangle \langle a_2 |\text{tr}( | b_1 \rangle \langle b_2 | )(2.178)
trB(∣a1⟩⟨a2∣⊗∣b1⟩⟨b2∣)≡∣a1⟩⟨a2∣tr(∣b1⟩⟨b2∣)(2.178)
其中
∣
a
1
⟩
| a_1 \rangle
∣a1⟩和
⟨
a
2
∣
\langle a_2 |
⟨a2∣是状态空间
A
A
A中的任意向量,
∣
b
1
⟩
| b_1 \rangle
∣b1⟩和
⟨
b
2
∣
\langle b_2 |
⟨b2∣是状态空间
B
B
B中的任意向量。等式右边的迹运算时系统
B
B
B上的普通迹运算,即
tr
(
∣
b
1
⟩
⟨
b
2
∣
)
=
⟨
b
1
∣
b
2
⟩
\text{tr}( | b_1 \rangle \langle b_2 | )=\left \langle b_1 | b_2 \right \rangle
tr(∣b1⟩⟨b2∣)=⟨b1∣b2⟩。
取偏迹的意义
系统 A A A的约化密度算子是系统 A A A状态的一个描述。
假设量子系统处于乘积态
ρ
A
B
=
ρ
⊗
σ
\rho ^{AB}=\rho \otimes \sigma
ρAB=ρ⊗σ,其中
ρ
\rho
ρ是系统
A
A
A的一个密度算子,
σ
\sigma
σ是系统
B
B
B的一个密度算子。则
ρ
A
=
tr
(
ρ
⊗
σ
)
=
ρ
tr
(
σ
)
=
ρ
(
2.184
)
\rho ^{A}=\text{tr}(\rho \otimes \sigma )=\rho \text{tr}(\sigma )=\rho (2.184)
ρA=tr(ρ⊗σ)=ρtr(σ)=ρ(2.184)
类似地,对这个状态有
ρ
B
=
σ
\rho ^{B}=\sigma
ρB=σ。
exp. 关于贝尔态
(
∣
00
⟩
+
∣
11
⟩
)
/
2
(| 00 \rangle +| 11 \rangle)/\sqrt{2}
(∣00⟩+∣11⟩)/2,有密度算子
ρ
=
(
∣
00
⟩
+
∣
11
⟩
2
)
(
⟨
00
∣
+
⟨
11
∣
2
)
=
∣
00
⟩
⟨
00
∣
+
∣
11
⟩
⟨
00
∣
+
∣
00
⟩
⟨
11
∣
+
∣
11
⟩
⟨
11
∣
2
(
2.186
)
\begin{aligned} \rho & =(\frac{| 00 \rangle +| 11 \rangle}{\sqrt{2}} )(\frac{\langle 00 | +\langle 11 |}{\sqrt{2}} ) \\ & =\frac{| 00 \rangle \langle 00 | +| 11 \rangle \langle 00 | +| 00 \rangle\langle 11 | +| 11 \rangle \langle 11 | }{2} (2.186) \end{aligned}
ρ=(2∣00⟩+∣11⟩)(2⟨00∣+⟨11∣)=2∣00⟩⟨00∣+∣11⟩⟨00∣+∣00⟩⟨11∣+∣11⟩⟨11∣(2.186)
对第二个量子比特取迹,得到对第一个量子比特的约化密度算子
ρ
1
=
tr
2
(
ρ
)
=
tr
2
(
∣
00
⟩
⟨
00
∣
)
+
tr
2
(
∣
11
⟩
⟨
00
∣
)
+
tr
2
(
∣
00
⟩
⟨
11
∣
)
+
tr
2
(
∣
11
⟩
⟨
11
∣
)
2
=
∣
0
⟩
⟨
0
∣
⟨
0
∣
0
⟩
+
∣
1
⟩
⟨
0
∣
⟨
0
∣
1
⟩
+
∣
0
⟩
⟨
1
∣
⟨
1
∣
0
⟩
+
∣
1
⟩
⟨
1
∣
⟨
1
∣
1
⟩
2
=
∣
0
⟩
⟨
0
∣
+
∣
1
⟩
⟨
1
∣
2
=
I
2
(
2.191
)
\begin{aligned} \rho ^1& =\text{tr}_2(\rho)\\ &=\frac{\text{tr}_2(| 00 \rangle \langle 00 |) +\text{tr}_2(| 11 \rangle \langle 00 |) +\text{tr}_2(| 00 \rangle\langle 11 |) +\text{tr}_2(| 11 \rangle \langle 11 |) }{2} \\ & =\frac{| 0 \rangle \langle 0 | \langle 0|0 \rangle +| 1 \rangle \langle 0| \langle 0|1 \rangle +| 0 \rangle\langle 1 | \langle 1|0 \rangle +| 1 \rangle \langle 1 |\langle 1|1 \rangle }{2}\\ &=\frac{| 0 \rangle \langle 0 |+| 1 \rangle \langle 1 |}{2} \\ &= \frac{I}{2} (2.191) \end{aligned}
ρ1=tr2(ρ)=2tr2(∣00⟩⟨00∣)+tr2(∣11⟩⟨00∣)+tr2(∣00⟩⟨11∣)+tr2(∣11⟩⟨11∣)=2∣0⟩⟨0∣⟨0∣0⟩+∣1⟩⟨0∣⟨0∣1⟩+∣0⟩⟨1∣⟨1∣0⟩+∣1⟩⟨1∣⟨1∣1⟩=2∣0⟩⟨0∣+∣1⟩⟨1∣=2I(2.191)
这个状态是一个混合态,因为
tr
(
(
I
/
2
)
2
)
=
1
/
2
<
1
\text{tr}((I/2)^2)=1/2<1
tr((I/2)2)=1/2<1。
重要性质:一个系统的联合状态可以被完全知道,而某个子系统却处于混合态,这是量子纠缠的另一个特征。
量子隐形传态和约化密度算子
约化密度算子的一个重要应用是对于量子隐形传态的分析。
量子隐形传态的过程是假设Alice和Bob共享一个EPR对和一条经典信道,并将量子信息从Alice传送到Bob。
约化密度算子给出了隐形传态没有比光通信快的严格证明。
在Alice测量之前这三个量子比特的量子状态是(式1.32)
∣
ψ
2
⟩
=
1
2
[
∣
00
⟩
(
α
∣
0
⟩
+
β
∣
1
⟩
)
+
∣
01
⟩
(
α
∣
1
⟩
+
β
∣
0
⟩
)
+
∣
10
⟩
(
α
∣
0
⟩
−
β
∣
1
⟩
)
+
∣
11
⟩
(
α
∣
1
⟩
−
β
∣
0
⟩
)
]
(
2.192
)
\left|\psi_{2}\right\rangle=\frac{1}{2}{[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)}+|10\rangle(\alpha|0\rangle-\beta|1\rangle)+|11\rangle(\alpha|1\rangle-\beta|0\rangle)](2.192)
∣ψ2⟩=21[∣00⟩(α∣0⟩+β∣1⟩)+∣01⟩(α∣1⟩+β∣0⟩)+∣10⟩(α∣0⟩−β∣1⟩)+∣11⟩(α∣1⟩−β∣0⟩)](2.192)
在Alice的计算基下进行测量,测量之后系统状态分别以概率1/4取
∣
00
⟩
[
α
∣
0
⟩
+
β
∣
1
⟩
]
∣
01
⟩
[
α
∣
1
⟩
+
β
∣
0
⟩
]
∣
10
⟩
[
α
∣
0
⟩
−
β
∣
1
⟩
]
∣
11
⟩
[
α
∣
1
⟩
−
β
∣
0
⟩
]
\begin{matrix} | 00 \rangle [\alpha | 0\rangle +\beta| 1\rangle]\\ | 01 \rangle [\alpha | 1\rangle +\beta| 0\rangle]\\ | 10 \rangle [\alpha | 0\rangle -\beta| 1\rangle]\\ | 11 \rangle [\alpha | 1\rangle -\beta| 0\rangle] \end{matrix}
∣00⟩[α∣0⟩+β∣1⟩]∣01⟩[α∣1⟩+β∣0⟩]∣10⟩[α∣0⟩−β∣1⟩]∣11⟩[α∣1⟩−β∣0⟩]
则系统的密度算子为
ρ
=
1
4
[
∣
00
⟩
⟨
00
∣
(
α
∣
0
⟩
+
β
∣
1
⟩
)
(
α
∗
⟨
0
∣
+
β
∗
⟨
1
∣
)
+
∣
01
⟩
⟨
01
∣
(
α
∣
1
⟩
+
β
∣
0
⟩
)
(
α
∗
⟨
1
∣
+
β
∗
⟨
0
∣
)
+
∣
10
⟩
⟨
10
∣
(
α
∣
0
⟩
−
β
∣
1
⟩
)
(
α
∗
⟨
0
∣
−
β
∗
⟨
1
∣
)
+
∣
11
⟩
⟨
11
∣
(
α
∣
1
⟩
−
β
∣
0
⟩
)
(
α
∗
⟨
1
∣
−
β
∗
⟨
0
∣
)
]
(
2.197
)
\begin{matrix} \rho =\frac{1}{4} [| 00 \rangle \langle00 |(\alpha | 0\rangle +\beta| 1\rangle)(\alpha^* \langle 0 | +\beta^*\langle 1 |)+| 01 \rangle \langle01 |(\alpha | 1\rangle +\beta| 0\rangle)(\alpha^* \langle 1 | +\beta^*\langle 0 |)\\ +| 10 \rangle \langle10 |(\alpha | 0\rangle -\beta| 1\rangle)(\alpha^* \langle 0 | -\beta^*\langle 1 |)+| 11 \rangle \langle11 |(\alpha |1\rangle -\beta| 0\rangle)(\alpha^* \langle 1 | -\beta^*\langle 0|)] \end{matrix}(2.197)
ρ=41[∣00⟩⟨00∣(α∣0⟩+β∣1⟩)(α∗⟨0∣+β∗⟨1∣)+∣01⟩⟨01∣(α∣1⟩+β∣0⟩)(α∗⟨1∣+β∗⟨0∣)+∣10⟩⟨10∣(α∣0⟩−β∣1⟩)(α∗⟨0∣−β∗⟨1∣)+∣11⟩⟨11∣(α∣1⟩−β∣0⟩)(α∗⟨1∣−β∗⟨0∣)](2.197)
对Alice的系统取迹,可以得到Bob系统的约化密度算子是
ρ
B
=
1
4
[
(
α
∣
0
⟩
+
β
∣
1
⟩
)
(
α
∗
⟨
0
∣
+
β
∗
⟨
1
∣
)
+
(
α
∣
1
⟩
+
β
∣
0
⟩
)
(
α
∗
⟨
1
∣
+
β
∗
⟨
0
∣
)
+
(
α
∣
0
⟩
−
β
∣
1
⟩
)
(
α
∗
⟨
0
∣
−
β
∗
⟨
1
∣
)
+
(
α
∣
1
⟩
−
β
∣
0
⟩
)
(
α
∗
⟨
1
∣
−
β
∗
⟨
0
∣
)
]
=
2
(
∣
α
∣
2
+
∣
β
∣
2
)
∣
0
⟩
⟨
0
∣
+
2
(
∣
α
∣
2
+
∣
β
∣
2
)
∣
1
⟩
⟨
1
∣
4
=
∣
0
⟩
⟨
0
∣
+
∣
1
⟩
⟨
1
∣
2
=
I
2
(
2.201
)
\begin{aligned} \rho^{B}= & \frac{1}{4}\left[( \alpha | 0 \rangle + \beta | 1 \rangle ) \left(\alpha ^ { * } \left\langle0\left|+\beta^{*}\langle 1|\right)+(\alpha|1\rangle+\beta|0\rangle)\left(\alpha^{*}\langle 1|+\beta^{*}\langle 0|\right)\right.\right.\right. \\ & +(\alpha|0\rangle-\beta|1\rangle)\left(\alpha^{*}\left\langle 0\left|-\beta^{*}\langle 1|\right)+(\alpha|1\rangle-\beta|0\rangle)\left(\alpha^{*}\langle 1|-\beta^{*}\langle 0|\right)\right]\right. \\ = & \frac{2(|\alpha|^{2}+|\beta|^{2})|0\rangle\langle 0|+2(|\alpha|^{2}+|\beta|^{2})| 1\rangle\langle 1|}{4} \\ = & \frac{|0\rangle\langle 0|+| 1\rangle\langle 1|}{2} \\ = & \frac{I}{2}(2.201) \end{aligned}
ρB====41[(α∣0⟩+β∣1⟩)(α∗⟨0∣+β∗⟨1∣)+(α∣1⟩+β∣0⟩)(α∗⟨1∣+β∗⟨0∣)+(α∣0⟩−β∣1⟩)(α∗⟨0∣−β∗⟨1∣)+(α∣1⟩−β∣0⟩)(α∗⟨1∣−β∗⟨0∣)]42(∣α∣2+∣β∣2)∣0⟩⟨0∣+2(∣α∣2+∣β∣2)∣1⟩⟨1∣2∣0⟩⟨0∣+∣1⟩⟨1∣2I(2.201)
在Alice执行测量之后而Bob得到结果之前,Bob的系统的状态是
I
/
2
I/2
I/2。这个状态不依赖于要隐形传态的状态
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩,因此Bob执行的任何测量将都不包含
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩的信息,从而阻止了Alice用隐形传态以超光速向Bob传送信息。
2.5 施密特分解与纯化
密度算子、偏迹、施密特分解以及纯化是研究复合量子系统的重要工具。
定理2.7 施密特分解
设
∣
ψ
⟩
\left | \psi \right \rangle
∣ψ⟩是复合系统
A
B
AB
AB的一个纯态,则存在系统
A
A
A的标准正交基
∣
i
A
⟩
\left | i_A \right \rangle
∣iA⟩和系统
B
B
B的标准正交基
∣
i
B
⟩
\left | i_B\right \rangle
∣iB⟩,使得
∣
ψ
⟩
=
∑
i
λ
i
∣
i
A
⟩
∣
i
B
⟩
(
2.202
)
| \psi \rangle =\sum_i\lambda _i | i_A \rangle| i_B \rangle(2.202)
∣ψ⟩=i∑λi∣iA⟩∣iB⟩(2.202)
其中
λ
i
\lambda _i
λi称为施密特系数,是满足
∑
i
λ
i
2
=
1
\sum_i\lambda _i ^2=1
∑iλi2=1的非负实数。
- 性质1:令 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩为复合系统 A B AB AB的纯态,通过施密特分解得到 ρ A = ∑ i λ i 2 ∣ i A ⟩ ⟨ i A ∣ \rho^A =\sum_i\lambda _i^2 | i_A \rangle\langle i_A| ρA=∑iλi2∣iA⟩⟨iA∣和 ρ B = ∑ i λ i 2 ∣ i B ⟩ ⟨ i B ∣ \rho^B =\sum_i\lambda _i^2 | i_B \rangle\langle i_B| ρB=∑iλi2∣iB⟩⟨iB∣,则对于这两种密度算子的特征值均为 λ i 2 \lambda _i^2 λi2。
- 性质2:基 ∣ i A ⟩ \left | i_A \right \rangle ∣iA⟩和 ∣ i B ⟩ \left | i_B\right \rangle ∣iB⟩分别称为 A A A和 B B B的施密特基,并且非零 λ i \lambda _i λi的个数称为态 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩的施密特数。施密特数量化了系统 A A A和 B B B之间的纠缠量。
- 性质3:施密特数在系统 A A A或 B B B的单独酉变换下保持不变。即如果 ∑ i λ i ∣ i A ⟩ ∣ i B ⟩ \sum_i\lambda _i | i_A \rangle| i_B \rangle ∑iλi∣iA⟩∣iB⟩是 ∣ ψ ⟩ \left | \psi \right \rangle ∣ψ⟩的施密特分解,那么 ∑ i λ i ( U ∣ i A ⟩ ) ∣ i B ⟩ \sum_i\lambda _i (U| i_A \rangle)| i_B \rangle ∑iλi(U∣iA⟩)∣iB⟩是 U ( ∣ ψ ⟩ ) U(\left | \psi \right \rangle ) U(∣ψ⟩)的施密特分解,其中 U U U是单独作用在系统 A A A上的酉算子。
纯化
定义:假设给定量子系统 A A A的状态 ρ A \rho^A ρA,引入另一个系统 R R R,定义联合系统 A R AR AR上的纯态 ∣ A R ⟩ |AR\rangle ∣AR⟩,使得 ρ A = tr ( ∣ A R ⟩ ⟨ A R ∣ ) \rho^A=\text{tr}(|AR\rangle\langle AR|) ρA=tr(∣AR⟩⟨AR∣)。即,当单独看系统 A A A时,纯态 ∣ A R ⟩ |AR\rangle ∣AR⟩约化为 ρ A \rho^A ρA,纯化使我们将纯态和混合态相联系。其中系统 R R R是参考系统,没有直接的物理意义。
任何状态都可以进行纯化。为 ρ A \rho^A ρA构造一个系统 R R R和纯态 ∣ A R ⟩ |AR\rangle ∣AR⟩。
假设
ρ
A
\rho^A
ρA有标准正交分解
ρ
A
=
∑
i
p
i
∣
i
A
⟩
⟨
i
A
∣
\rho^A=\sum_ip_i|i^A\rangle\langle i^A|
ρA=∑ipi∣iA⟩⟨iA∣。为对
ρ
A
\rho^A
ρA进行纯化,引入和系统
A
A
A有相同维数且有标准正交基
∣
i
R
⟩
\left | i_R \right \rangle
∣iR⟩的系统
R
R
R,根据施密特分解定义复合系统的纯态为
∣
A
R
⟩
=
∑
i
p
i
∣
i
A
⟩
∣
i
R
⟩
(
2.207
)
|AR\rangle=\sum_i\sqrt{p_i} |i^A\rangle|i^R\rangle(2.207)
∣AR⟩=i∑pi∣iA⟩∣iR⟩(2.207)
计算系统
A
A
A对应于状态
∣
A
R
⟩
|AR\rangle
∣AR⟩的约化密度算子:
ρ
A
=
tr
R
(
∣
A
R
⟩
⟨
A
R
∣
)
=
∑
i
j
p
i
p
j
∣
i
A
⟩
⟨
j
A
∣
tr
(
∣
i
R
⟩
⟨
j
R
∣
)
=
∑
i
j
p
i
p
j
∣
i
A
⟩
⟨
j
A
∣
δ
i
j
=
∑
i
p
i
∣
i
A
⟩
⟨
i
A
∣
=
ρ
A
(
2.211
)
\begin{aligned} \rho^A=\operatorname{tr}_{R}(|A R\rangle\langle A R|) & =\sum_{i j} \sqrt{p_{i} p_{j}}\left|i^{A}\right\rangle\left\langle j^{A}\right| \operatorname{tr}\left(\left|i^{R}\right\rangle\left\langle j^{R}\right|\right) \\ & =\sum_{i j} \sqrt{p_{i} p_{j}}\left|i^{A}\right\rangle\left\langle j^{A}\right| \delta_{i j}\\ & =\sum_{i} p_{i}\left|i^{A}\right\rangle\left\langle i^{A}\right|\\ & =\rho^{A}(2.211) \end{aligned}
ρA=trR(∣AR⟩⟨AR∣)=ij∑pipj
iA⟩⟨jA
tr(
iR⟩⟨jR
)=ij∑pipj
iA⟩⟨jA
δij=i∑pi
iA⟩⟨iA
=ρA(2.211)
因此
∣
A
R
⟩
|AR\rangle
∣AR⟩是
ρ
A
\rho^A
ρA的纯化。
纯化与施密特分解的关系
纯化一个系统 A A A的混合态的过程是定义一个纯态,它相对系统 A A A的施密特基恰好将混合态对角化,施密特系数是被纯化的密度算子的特征值的平方根。
2.6 EPR和贝尔不等式
贝尔不等式:
E
(
Q
S
)
+
E
(
R
S
)
+
E
(
R
T
)
−
E
(
Q
T
)
≤
2
(
2.225
)
\mathbb{E} (QS)+\mathbb{E} (RS)+\mathbb{E} (RT)-\mathbb{E} (QT)\le 2(2.225)
E(QS)+E(RS)+E(RT)−E(QT)≤2(2.225)
Tsirelson不等式:
⟨
Q
⊗
S
⟩
+
⟨
R
⊗
S
⟩
+
⟨
R
⊗
T
⟩
−
⟨
Q
⊗
T
⟩
≤
2
2
(
2.234
)
\langle Q\otimes S\rangle +\langle R\otimes S\rangle +\langle R\otimes T\rangle -\langle Q\otimes T\rangle\le 2\sqrt{2} (2.234)
⟨Q⊗S⟩+⟨R⊗S⟩+⟨R⊗T⟩−⟨Q⊗T⟩≤22(2.234)