动态规划算法
一、基本介绍
- 动态规划算法核心思想是 将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
- 与分治算法类似,基本思想都是拆分若干子问题,先求子问题的解得原问题解
- 不同的是,使用动态规划求解的问题,分解的子问题往往不是相互独立的。(即下一个阶段的求解是建立在上一个子阶段的基础上进行的)
- 动态规划可以通过填表的方式来逐步推进,得到最优解
二、最佳实践-背包问题
思路分析和图解
背包问题主要指一个给定容量的背包、若干具有一定价值和重量的物品,如何选则物品放入背包使物品的价值最大。其中又分01背包(每种物品只能一件)和完全背包(每种物品都无限件)
这里的问题属于01背包,无限背包问题也可以转化为01背包问题
算法主要思想
每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中;
即对于给定的n个物品中,设v[i]、w[i]分别为第i个物品的价值和重量;
C为背包的容量;
令v[i][j] 表示在前i个物品中能够装入容量为i的背包的最大价值。
v[i][0] = v[0][j] = 0 表示第一行第一列为0
w[i] >j 时:v[i][j] = v[i-1][j] 如果i物品重量大于最大重量j,则使用上一个物品i-1的价值作为最大价值
w[i] <j 时:v[i][j] = max { v[i-1][j] , v[i-1][j-w[i]] + v[i] } 如果i物品的重量小于最大重量j,则从上一个物品i-1的价值和自身价值+上一个物品i-1中除去i物品的重量所包含的物品的价值中找到最大值
代码实现
public class KnaosackProblem {
public static void main(String[] args) {
int[] w = {1, 4, 3};//物品的重量
int[] val = {1500, 3000, 2000};//物品的价值
int m = 4;//背包的容量
int n = val.length;//物品的个数
//创建二位数组
int[][] v = new int[n + 1][m + 1];
//为了记录放入商品的情况,我们定义一个二维数组
int[][] path = new int[n + 1][m + 1];
//初始化第一行和第一列
for (int i = 0; i < v.length; i++) {
v[i][0] = 0;//第一列设置为零
}
for (int i = 0; i < v[0].length; i++) {
v[0][i] = 0;//第一行设置为零
}
//根据公式来动态规划处理
for (int i = 1; i < v.length; i++) {
for (int j = 1; j < v[0].length; j++) {
//公式
if (w[i - 1] > j) {
v[i][j] = v[i - 1][j];
} else {
//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
//为了记录商品存放到背包的情况
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
//把当前结果记录在path中
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
//输出
for (int i = 0; i < v.length; i++) {
for (int j = 0; j < v[i].length; j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}
System.out.println("==================");
//遍历
int i = path.length - 1;
int j = path[0].length - 1;
while (i > 0 && j > 0) {
if (path[i][j] == 1) {
System.out.printf("第%d个商品放入到背包\n", i);
j -= w[i - 1];
}
i--;
}
}
}