数据结构与算法-动态规划算法 | 尚硅谷韩顺平

动态规划算法

一、基本介绍

  1. 动态规划算法核心思想是 将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
  2. 与分治算法类似,基本思想都是拆分若干子问题,先求子问题的解得原问题解
  3. 不同的是,使用动态规划求解的问题,分解的子问题往往不是相互独立的。(即下一个阶段的求解是建立在上一个子阶段的基础上进行的)
  4. 动态规划可以通过填表的方式来逐步推进,得到最优解

二、最佳实践-背包问题

思路分析和图解

背包问题主要指一个给定容量的背包、若干具有一定价值和重量的物品,如何选则物品放入背包使物品的价值最大。其中又分01背包(每种物品只能一件)完全背包(每种物品都无限件)

这里的问题属于01背包,无限背包问题也可以转化为01背包问题 

算法主要思想

每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中;

即对于给定的n个物品中,设v[i]、w[i]分别为第i个物品的价值和重量;

C为背包的容量;

令v[i][j] 表示在前i个物品中能够装入容量为i的背包的最大价值。 

v[i][0] = v[0][j] = 0    表示第一行第一列为0

w[i] >j 时:v[i][j] = v[i-1][j]    如果i物品重量大于最大重量j,则使用上一个物品i-1的价值作为最大价值 

w[i] <j 时:v[i][j] = max { v[i-1][j] , v[i-1][j-w[i]] + v[i] }  如果i物品的重量小于最大重量j,则从上一个物品i-1的价值和自身价值+上一个物品i-1中除去i物品的重量所包含的物品的价值中找到最大值

代码实现

public class KnaosackProblem {
    public static void main(String[] args) {
        int[] w = {1, 4, 3};//物品的重量
        int[] val = {1500, 3000, 2000};//物品的价值
        int m = 4;//背包的容量
        int n = val.length;//物品的个数

        //创建二位数组
        int[][] v = new int[n + 1][m + 1];
        //为了记录放入商品的情况,我们定义一个二维数组
        int[][] path = new int[n + 1][m + 1];

        //初始化第一行和第一列
        for (int i = 0; i < v.length; i++) {
            v[i][0] = 0;//第一列设置为零
        }
        for (int i = 0; i < v[0].length; i++) {
            v[0][i] = 0;//第一行设置为零
        }

        //根据公式来动态规划处理
        for (int i = 1; i < v.length; i++) {
            for (int j = 1; j < v[0].length; j++) {
                //公式
                if (w[i - 1] > j) {
                    v[i][j] = v[i - 1][j];
                } else {
                    //v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
                    //为了记录商品存放到背包的情况
                    if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
                        v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
                        //把当前结果记录在path中
                        path[i][j] = 1;
                    } else {
                        v[i][j] = v[i - 1][j];
                    }
                }
            }
        }
        //输出
        for (int i = 0; i < v.length; i++) {
            for (int j = 0; j < v[i].length; j++) {
                System.out.print(v[i][j] + " ");
            }
            System.out.println();
        }
        System.out.println("==================");

        //遍历
        int i = path.length - 1;
        int j = path[0].length - 1;
        while (i > 0 && j > 0) {
            if (path[i][j] == 1) {
                System.out.printf("第%d个商品放入到背包\n", i);
                j -= w[i - 1];
            }
            i--;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卒获有所闻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值