1.2 Yarn 工作机制

本文详细阐述了YARN环境中MapReduce程序的执行步骤,包括MR程序提交、资源申请、任务分配、NodeManager执行MapTask和ReduceTask,以及程序结束时的资源释放。整个过程展示了Hadoop分布式计算的内在机制。
摘要由CSDN通过智能技术生成

 

(1)MR 程序提交到客户端所在的节点。

(2)YarnRunner 向 ResourceManager 申请一个 Application。

(3)RM 将该应用程序的资源路径返回给 YarnRunner。

(4)该程序将运行所需资源提交到 HDFS 上。

(5)程序资源提交完毕后,申请运行 mrAppMaster。

(6)RM 将用户的请求初始化成一个 Task。

(7)其中一个 NodeManager 领取到 Task 任务。

(8)该 NodeManager 创建容器 Container,并产生 MRAppmaster。

(9)Container 从 HDFS 上拷贝资源到本地。

(10)MRAppmaster 向 RM 申请运行 MapTask 资源。

(11)RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分别领取任务并创建容器。

(12)MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager分别启动 MapTask,MapTask 对数据分区排序。

(13)MrAppMaster 等待所有 MapTask 运行完毕后,向 RM 申请容器,运行 ReduceTask。

(14)ReduceTask 向 MapTask 获取相应分区的数据。

(15)程序运行完毕后,MR 会向 RM 申请注销自己。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值