深度置信网络

本文介绍了深度置信网络(DBN)及其组成部分——玻尔兹曼机(BM)和受限玻尔兹曼机(RBM)。DBN是一种神经网络模型,既可用于非监督学习的特征降维,也可用于监督学习的分类任务。玻尔兹曼机是一种二值随机神经网络,特点是全连接和对称权重;受限玻尔兹曼机则取消了层间连接,简化了网络结构。深度置信网络通过堆叠多个RBM层来学习高级抽象特征,是深度学习领域的重要工具。
摘要由CSDN通过智能技术生成

深度置信网络是神经网络的- -种。 既可以用于非监督学习,类似于一个自编码机也可以用于监督学习,作为分类器来使用。从非监督学习来讲,其目的是尽可能地保留原始特征的特点,同时降低特征的维度。从监督学习来讲,其目的在于使得分类错误率尽可能地小。而不论是监督学习还是非监督学习, 深度置信网络的本质都是特征的过程,即如何得到更好的特征表达。本章节将主要介绍玻尔兹曼机受限玻尔兹曼机以及深度置信网络。

玻尔兹曼机
定义:

一种由二值随机神经元构成的两层对称连接神经网络。其权值通过优化玻尔兹曼能量函数获得。

特点:

特点1 :每个随机变量都是二值的( {0,1})
特点2 :所有节点是全连接的
特点3 :两个节点之间的相互影响是对称的

受限玻尔兹曼机

特点:层的神经元之间没有连接关系。

 传播过程:

深度置信网络:

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值