二分的板子题
这里要区分是 <=x的最大或是>=x的最小值
/*
* @Author: your name
* @Date: 2022-03-13 17:43:40
* @LastEditTime: 2022-03-13 18:22:07
* @LastEditors: Please set LastEditors
* @Description: 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
* @FilePath: \All code\52.cpp
*/
#include <bits/stdc++.h>
using namespace std;
int a[100001];
int n;
int x;
int find_l(int l, int r) //找<=x的最小值
{
while (l < r)
{
int mid = l+((r-l) >> 1);
if (a[mid] >= x)
r = mid;
else
l = mid + 1;
}
return l;
}
int find_r(int l, int r)
{
while (l < r)
{
int mid = l+ ((r - l + 1) >> 1);
if (a[mid] <= x)
l = mid;
else
r = mid - 1;
}
return r;
}
int main()
{
int t;
cin >> n >> t;
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
for (int i = 0; i < t; i++)
{
cin >> x;
int l = find_l(0, n - 1);
int r = find_r(0, n - 1);
if (a[l] == x )
cout << l+1 << " " << r+1 << endl;
else
cout << "-1 -1" << endl;
}
return 0;
}
平方数 (这个题与想象中的二分有点不一样 ) 用的是区间之间的减法 从而快速实现 体会一下这里。
#include<bits/stdc++.h>
using namespace std;
int main()
{
int T;
cin>>T;
while(T--)
{
long long int l,r;
cin>>l>>r;
if(l == 0)
cout<<(int)sqrt(r)+1<<endl;
else
cout<<(int)sqrt(r) - (int)sqrt(l-1)<<endl;
}
return 0;
}
挑石头 (二分答案的题目 )
这是一个典型的二分答案 说实话,没做过这一类型的 题目真的不会想到二分,另外,这里面的每一步的过程需要考虑清楚,最后在输出的时候是输出l,这个二分的类型是向左靠。
/*
* @Author: your name
* @Date: 2022-03-13 18:31:56
* @LastEditTime: 2022-03-13 18:56:52
* @LastEditors: your name
* @Description: 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
* @FilePath: \All code\53.cpp
*/
#include <iostream>
using namespace std;
int a[100000001];
long int L, M, N;
bool check1(int mid)//mid是当前的最小距离
{
int ans = 0;
int be = 0;
for (int i = 1; i <= N; i++)
{
if (a[i] - be < mid)
ans++;
else
be = a[i];
}
if (ans > M)
return 0;
return 1;
}
int main()
{
cin >> L >> N >> M;
for (int i = 1; i <= N; i++)
{
cin >> a[i];
}
int mid, l = 1, r = L;
int ans;
while (l < r)
{
mid = l + (r - l + 1) / 2;
if (check1(mid))
{
ans = mid;//这里为什么要这里采取呢
l = mid;
}
else
r = mid - 1;
}
cout << l << endl;
}
分教室 (这个题目中的二分有点巧妙 是将人数进行二分 同时利用差分的思想 值得康一看)
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10000005;
long int a[MAXN],d[MAXN],diff[MAXN],need[MAXN];
long int n,m,s[MAXN],t[MAXN];
bool check(int mid)
{
memset(diff,0,sizeof(diff));
for(int i = 1;i<=mid;i++)//到这个第i个用户的时候可不可以 把之前的用户全部加上去
//这里的意思是在这里mid的时候是会满足
{
diff[s[i]] += d[i];//差分用于区间修改
diff[t[i]+1] -= d[i];
}
for(int i =1;i<=m;i++)
{
need[i] = need[i-1]+diff[i];
if(need[i]>a[i]) return 0;//不满足条件了
}
return 1;
}
int main()
{
cin>>m>>n;
for(int i = 1;i<=m;i++)
cin>>a[i];
for(int i =1;i<=n;i++)
{
cin>>d[i]>>s[i]>>t[i];
}
int l = 1,r = n,mid;
if(check(n))
{
cout<<0<<endl;
return 0;
}
while(l<r)//搜索区间为[1,n]
{
mid = (r+l)/2;
if(check(mid))
{
l =mid+1;
}
else
r = mid;
}
cout<<-1<<endl<<l;
}
其实这个题主要是区间维护 相当区间维护 就基本上是板子题了