界壁0.2

import os
import sys
import subprocess
import re
import datetime
import threading
import multiprocessing
import tkinter as tk
from tkinter import messagebox, simpledialog, ttk
import scapy.all as scapy
import whois
import smtplib
from email.mime.text import MIMEText
import numpy as np
import tensorflow as tf
from sklearn.ensemble import IsolationForest
from sklearn.svm import OneClassSVM
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
import json
import random
import socket
import pickle
from geopy.geocoders import Nominatim

# 请求 root 权限
def request_root_permission():
    if os.geteuid() != 0:
        print("请以 root 权限运行此脚本。")
        exit(1)

# 获取 root 权限
def get_root_permission():
    if os.geteuid() != 0:
        print("请求 root 权限...")
        subprocess.run(["sudo", sys.executable, *sys.argv])
        exit(0)

# 配置防火墙规则
def configure_firewall():
    print("配置防火墙规则...")
    subprocess.run(["sudo", "iptables", "-A", "INPUT", "-j", "LOG", "--log-prefix", "IPTables-Input: "])
    subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-j", "LOG", "--log-prefix", "IPTables-Output: "])
    # 阻断已知恶意 IP 地址
    known_malicious_ips = ["192.168.1.100", "10.0.0.1"]
    for ip in known_malicious_ips:
        subprocess.run(["sudo", "iptables", "-A", "INPUT", "-s", ip, "-j", "DROP"])
        subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-d", ip, "-j", "DROP"])

# 读取和解析系统日志
def analyze_logs(log_file):
    print(f"分析日志文件 {log_file}...")
    with open(log_file, 'r') as file:
        lines = file.readlines()
    
    suspicious_activities = []
    for line in lines:
        if "IPTables-Input" in line or "IPTables-Output" in line:
            match = re.search(r'(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})', line)
            if match:
                ip_address = match.group(1)
                timestamp = re.search(r'\w{3} \w{3} \d{2} \d{2}:\d{2}:\d{2}', line)
                if timestamp:
                    timestamp = timestamp.group(0)
                    suspicious_activities.append((timestamp, ip_address, line.strip()))
    
    return suspicious_activities

# 使用 Scapy 抓取特定端口的流量
def capture_traffic(interface, port):
    print(f"抓取 {interface} 上的 {port} 端口流量...")
    packets = scapy.sniff(iface=interface, filter=f"port {port}", count=100)
    return packets

# 获取入侵者地理位置
def get_geolocation(ip_address):
    try:
        geolocator = Nominatim(user_agent="security_system")
        location = geolocator.geocode(ip_address)
        if location:
            return f"{location.city}, {location.country}"
        else:
            return "未知位置"
    except Exception as e:
        return f"获取地理位置失败: {str(e)}"

# 验证 IP 地址
def verify_ip(ip_address):
    try:
        w = whois.whois(ip_address)
        if w and w.get('nets'):
            return w.nets[0].get('description', "未知描述")
        else:
            return "未知描述"
    except Exception as e:
        return f"验证 IP 失败: {str(e)}"

# 生成报告
def generate_report(suspicious_activities, report_file):
    print(f"生成报告到 {report_file}...")
    with open(report_file, 'w') as file:
        file.write("可疑活动报告\n")
        file.write("=" * 30 + "\n")
        file.write(f"生成时间: {datetime.datetime.now()}\n")
        file.write("\n")
        file.write("时间戳\tIP 地址\t地理位置\t描述\t日志条目\n")
        file.write("-" * 80 + "\n")
        for activity in suspicious_activities:
            geolocation = get_geolocation(activity[1])
            description = verify_ip(activity[1])
            file.write(f"{activity[0]}\t{activity[1]}\t{geolocation}\t{description}\t{activity[2]}\n")

# 生成沙箱环境
def create_sandbox(ip_address):
    print(f"为 IP 地址 {ip_address} 创建沙箱...")
    sandbox_dir = f"/tmp/sandbox_{ip_address}"
    os.makedirs(sandbox_dir, exist_ok=True)
    
    # 模拟多线程和多核处理
    def simulate_computation():
        for i in range(1000000):
            pass
    
    threads = []
    for _ in range(2):
        thread = threading.Thread(target=simulate_computation)
        threads.append(thread)
        thread.start()
    
    for thread in threads:
        thread.join()
    
    with open(os.path.join(sandbox_dir, "README.txt"), 'w') as file:
        file.write(f"沙箱环境用于 IP 地址: {ip_address}\n")
        file.write("此目录被隔离以防止潜在威胁。\n")
    
    return sandbox_dir

# 使用 GPU 加速
def use_gpu_acceleration(data):
    print("使用 GPU 加速...")
    with tf.device('/GPU:0'):
        result = tf.reduce_sum(data)
    return result.numpy()

# 使用 CPU 加速
def use_cpu_acceleration(data):
    print("使用 CPU 加速...")
    result = np.sum(data)
    return result

# 自适应防护机制(太极护盾)
class TaiJiShield:
    def __init__(self):
        self.isolation_forest = IsolationForest(contamination=0.01)
        self.one_class_svm = OneClassSVM(nu=0.01, kernel='rbf', gamma='scale')
        self.scaler = StandardScaler()
        self.data = []
        self.model_trained = False
        self.model_path = "taiji_model.pkl"
    
    def train(self, new_data):
        self.data.extend(new_data)
        self.data = np.array(self.data)
        self.data = self.scaler.fit_transform(self.data)
        self.isolation_forest.fit(self.data)
        self.one_class_svm.fit(self.data)
        self.model_trained = True
        self.save_model()
    
    def predict(self, data):
        if not self.model_trained:
            return 1, 1
        data = np.array(data).reshape(1, -1)
        data = self.scaler.transform(data)
        isolation_forest_pred = self.isolation_forest.predict(data)
        one_class_svm_pred = self.one_class_svm.predict(data)
        return isolation_forest_pred[0], one_class_svm_pred[0]
    
    def save_model(self):
        model_data = {
            'isolation_forest': self.isolation_forest,
            'one_class_svm': self.one_class_svm,
            'scaler': self.scaler
        }
        with open(self.model_path, 'wb') as file:
            pickle.dump(model_data, file)
    
    def load_model(self):
        if os.path.exists(self.model_path):
            with open(self.model_path, 'rb') as file:
                model_data = pickle.load(file)
                self.isolation_forest = model_data['isolation_forest']
                self.one_class_svm = model_data['one_class_svm']
                self.scaler = model_data['scaler']
                self.model_trained = True

# 发送警告邮件
def send_warning_email(ip_address, recipient_email):
    sender_email = "your_email@example.com"
    sender_password = "your_password"
    subject = "警告:停止入侵行为"
    message = f"尊敬的用户,我们检测到您的 IP 地址 {ip_address} 正在尝试入侵我们的系统。请立即停止所有入侵行为,否则我们将采取进一步的法律行动。"
    
    msg = MIMEText(message)
    msg['From'] = sender_email
    msg['To'] = recipient_email
    msg['Subject'] = subject
    
    try:
        server = smtplib.SMTP('smtp.example.com', 587)
        server.starttls()
        server.login(sender_email, sender_password)
        server.sendmail(sender_email, recipient_email, msg.as_string())
        server.quit()
        print(f"警告邮件已发送至 {recipient_email}")
    except Exception as e:
        print(f"发送警告邮件失败: {e}")

# 动态黑名单
def update_blacklist(ip_address):
    with open("/etc/blacklist.conf", 'a') as file:
        file.write(f"{ip_address}\n")
    subprocess.run(["sudo", "iptables", "-A", "INPUT", "-s", ip_address, "-j", "DROP"])
    subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-d", ip_address, "-j", "DROP"])

# 部署蜜罐
def deploy_honeypot(port):
    def handle_client(client_socket):
        client_socket.send(b"Welcome to the honeypot!")
        client_socket.close()
    
    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server.bind(('0.0.0.0', port))
    server.listen(5)
    print(f"Honeypot listening on port {port}")
    
    while True:
        client_socket, addr = server.accept()
        print(f"Connection from {addr}")
        threading.Thread(target=handle_client, args=(client_socket,)).start()

# 动态端口跳跃
def dynamic_port_jumping(service_port):
    new_port = random.randint(1024, 65535)
    subprocess.run(["sudo", "iptables", "-t", "nat", "-A", "PREROUTING", "-p", "tcp", "--dport", str(service_port), "-j", "REDIRECT", "--to-port", str(new_port)])
    print(f"Service port {service_port} redirected to {new_port}")

# 模拟攻击
def simulate_attack(ip_address):
    for _ in range(10):
        subprocess.run(["ping", "-c", "1", ip_address])

# 有限反击增强
def enhanced_limited_counterattack(ip_address):
    print(f"对 IP 地址 {ip_address} 进行增强有限反击...")
    update_blacklist(ip_address)
    deploy_honeypot(random.randint(1024, 65535))
    dynamic_port_jumping(22)
    simulate_attack(ip_address)

# 数据流识别与转化
def transform_traffic(packets):
    transformed_packets = []
    for packet in packets:
        if packet.haslayer(scapy.IP):
            packet[scapy.IP].src = "192.168.1.100"  # 模拟正常流量
            packet[scapy.IP].dst = "192.168.1.101"
        transformed_packets.append(packet)
    return transformed_packets

# 蜜罐虚拟小世界空间
def create_advanced_honeypot(ip_address):
    sandbox_dir = create_sandbox(ip_address)
    honeypot_port = random.randint(1024, 65535)
    threading.Thread(target=deploy_honeypot, args=(honeypot_port,)).start()
    return sandbox_dir, honeypot_port

# 对冲数据流反击
def release_counter_traffic(packets):
    transformed_packets = transform_traffic(packets)
    for packet in transformed_packets:
        scapy.sendp(packet, iface="eth0")

# 失控次级蜜罐的定位、突破、引爆
def explode_honeypot(ip_address, sandbox_dir, honeypot_port):
    print(f"引爆蜜罐 {ip_address}:{honeypot_port}...")
    subprocess.run(["sudo", "iptables", "-A", "INPUT", "-s", ip_address, "-j", "DROP"])
    subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-d", ip_address, "-j", "DROP"])
    # 这里可以添加更多反击手段,如释放病毒、强制断开连接等

# 高级防护机制
def advanced_protection(ip_address, data_stream):
    print(f"对 IP 地址 {ip_address} 进行高级防护...")
    # 复制数据流
    copied_data = data_stream.copy()
    
    # 反向释放对冲数据流
    release_counter_traffic(copied_data)
    
    # 模拟学习入侵者攻击方法
    def simulate_attack(data):
        # 模拟学习过程
        model = Sequential()
        model.add(Dense(64, input_dim=len(data[0]), activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(1, activation='sigmoid'))
        model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
        model.fit(data, np.zeros(len(data)), epochs=10, batch_size=32)
        return model
    
    model = simulate_attack(data_stream)
    
    # 形成沙盒等虚拟小空间进行捕捉、吞噬、拟合、强化、反击
    sandbox_dir, honeypot_port = create_advanced_honeypot(ip_address)
    
    # 发送即将失控的沙箱到对方并进行引爆
    explode_honeypot(ip_address, sandbox_dir, honeypot_port)

# 主函数
def main():
    get_root_permission()
    
    # 配置防火墙
    configure_firewall()
    
    # 分析日志
    suspicious_activities = analyze_logs("/var/log/kern.log")
    
    # 抓取流量
    packets = capture_traffic("eth0", 22)
    
    # 生成报告
    generate_report(suspicious_activities, "suspicious_activities_report.txt")
    
    # 初始化太极护盾
    taiji_shield = TaiJiShield()
    taiji_shield.load_model()
    
    # 提取特征并训练模型
    features = []
    for activity in suspicious_activities:
        ip_address = activity[1]
        geolocation = get_geolocation(ip_address)
        description = verify_ip(ip_address)
        features.append([ip_address, geolocation, description])
    
    # 将特征转换为数值
    features = [[hash(ip), hash(geo), hash(desc)] for ip, geo, desc in features]
    taiji_shield.train(features)
    
    # 创建 GUI
    root = tk.Tk()
    root.title("安全监控系统")
    
    # 创建 Notebook
    notebook = ttk.Notebook(root)
    notebook.pack(fill='both', expand=True)
    
    # 创建实时监控标签页
    monitoring_frame = ttk.Frame(notebook)
    notebook.add(monitoring_frame, text="实时监控")
    
    # 创建日志查看标签页
    log_frame = ttk.Frame(notebook)
    notebook.add(log_frame, text="日志查看")
    
    # 创建沙箱管理标签页
    sandbox_frame = ttk.Frame(notebook)
    notebook.add(sandbox_frame, text="沙箱管理")
    
    # 创建反击操作标签页
    counterattack_frame = ttk.Frame(notebook)
    notebook.add(counterattack_frame, text="反击操作")
    
    # 实时监控标签页
    listbox = tk.Listbox(monitoring_frame, width=100, height=20)
    listbox.pack(padx=10, pady=10)
    
    for activity in suspicious_activities:
        geolocation = get_geolocation(activity[1])
        description = verify_ip(activity[1])
        listbox.insert(tk.END, f"{activity[0]} - {activity[1]} - {geolocation} - {description} - {activity[2]}")
    
    def select_activity(event):
        selected_index = listbox.curselection()
        if selected_index:
            selected_activity = suspicious_activities[selected_index[0]]
            ip_address = selected_activity[1]
            geolocation = get_geolocation(ip_address)
            description = verify_ip(ip_address)
            feature = [hash(ip_address), hash(geolocation), hash(description)]
            isolation_forest_pred, one_class_svm_pred = taiji_shield.predict(feature)
            if isolation_forest_pred == -1 or one_class_svm_pred == -1:
                create_sandbox(ip_address)
                messagebox.showinfo("沙箱已创建", f"已为 IP 地址: {ip_address} 创建沙箱")
                send_warning_email(ip_address, "admin@example.com")  # 替换为实际的管理员邮箱
                for _ in range(500):
                    send_warning_email(ip_address, "admin@example.com")
                if not messagebox.askyesno("警告无效", f"警告无效,是否进行高级防护?"):
                    advanced_protection(ip_address, packets)
    
    listbox.bind('<<ListboxSelect>>', select_activity)
    
    # 日志查看标签页
    log_text = tk.Text(log_frame, wrap='word', width=100, height=20)
    log_text.pack(padx=10, pady=10)
    
    def show_report():
        with open("suspicious_activities_report.txt", 'r') as file:
            report_content = file.read()
        log_text.delete(1.0, tk.END)
        log_text.insert(tk.END, report_content)
    
    report_button = tk.Button(log_frame, text="显示报告", command=show_report)
    report_button.pack(pady=10)
    
    # 沙箱管理标签页
    sandbox_listbox = tk.Listbox(sandbox_frame, width=100, height=20)
    sandbox_listbox.pack(padx=10, pady=10)
    
    def refresh_sandboxes():
        sandbox_listbox.delete(0, tk.END)
        for activity in suspicious_activities:
            ip_address = activity[1]
            sandbox_dir = f"/tmp/sandbox_{ip_address}"
            if os.path.exists(sandbox_dir):
                sandbox_listbox.insert(tk.END, f"{ip_address} - {sandbox_dir}")
    
    refresh_button = tk.Button(sandbox_frame, text="刷新沙箱列表", command=refresh_sandboxes)
    refresh_button.pack(pady=10)
    
    # 反击操作标签页
    def perform_counterattack(ip_address):
        response = messagebox.askyesno("反击操作", f"您确定要对 IP 地址 {ip_address} 进行反击吗?")
        if response:
            enhanced_limited_counterattack(ip_address)
            messagebox.showinfo("反击成功", f"已对 IP 地址 {ip_address} 进行反击。")
    
    counterattack_entry = tk.Entry(counterattack_frame, width=50)
    counterattack_entry.pack(pady=10)
    
    counterattack_button = tk.Button(counterattack_frame, text="执行反击", command=lambda: perform_counterattack(counterattack_entry.get()))
    counterattack_button.pack(pady=10)
    
    # 自动反击
    def auto_counterattack():
        if not os.path.exists("/tmp/security_lock"):
            with open("/tmp/security_lock", 'w') as lock_file:
                lock_file.write("Locked")
            for activity in suspicious_activities:
                ip_address = activity[1]
                geolocation = get_geolocation(ip_address)
                description = verify_ip(ip_address)
                feature = [hash(ip_address), hash(geolocation), hash(description)]
                isolation_forest_pred, one_class_svm_pred = taiji_shield.predict(feature)
                if isolation_forest_pred == -1 or one_class_svm_pred == -1:
                    enhanced_limited_counterattack(ip_address)
                    messagebox.showinfo("自动反击", f"已对 IP 地址 {ip_address} 进行自动反击。")
    
    # 检查界面异常或计算机被劫持
    def check_interface():
        if not os.path.exists("/tmp/security_lock"):
            auto_counterattack()
    
    check_interface()
    
    root.mainloop()

if __name__ == "__main__":
    main()

简单说明
1.
请求 root 权限
python
def request_root_permission():
    if os.geteuid() != 0:
        print("请以 root 权限运行此脚本。")
        exit(1)

def get_root_permission():
    if os.geteuid() != 0:
        print("请求 root 权限...")
        subprocess.run(["sudo", sys.executable, *sys.argv])
        exit(0)
request_root_permission:检查当前是否以 root 权限运行,如果不是则退出。
get_root_permission:如果当前不是 root 权限,则请求 root 权限并重新运行脚本。
2.
配置防火墙规则
python
def configure_firewall():
    print("配置防火墙规则...")
    subprocess.run(["sudo", "iptables", "-A", "INPUT", "-j", "LOG", "--log-prefix", "IPTables-Input: "])
    subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-j", "LOG", "--log-prefix", "IPTables-Output: "])
    # 阻断已知恶意 IP 地址
    known_malicious_ips = ["192.168.1.100", "10.0.0.1"]
    for ip in known_malicious_ips:
        subprocess.run(["sudo", "iptables", "-A", "INPUT", "-s", ip, "-j", "DROP"])
        subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-d", ip, "-j", "DROP"])
配置防火墙规则,记录输入和输出流量,并阻断已知的恶意IP地址。

3.
读取和解析系统日志
python
def analyze_logs(log_file):
    print(f"分析日志文件 {log_file}...")
    with open(log_file, 'r') as file:
        lines = file.readlines()
    
    suspicious_activities = []
    for line in lines:
        if "IPTables-Input" in line or "IPTables-Output" in line:
            match = re.search(r'(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})', line)
            if match:
                ip_address = match.group(1)
                timestamp = re.search(r'\w{3} \w{3} \d{2} \d{2}:\d{2}:\d{2}', line)
                if timestamp:
                    timestamp = timestamp.group(0)
                    suspicious_activities.append((timestamp, ip_address, line.strip()))
    
    return suspicious_activities
读取系统日志文件,提取包含防火墙日志条目的可疑活动。

4.
使用 Scapy 抓取特定端口的流量
python
def capture_traffic(interface, port):
    print(f"抓取 {interface} 上的 {port} 端口流量...")
    packets = scapy.sniff(iface=interface, filter=f"port {port}", count=100)
    return packets
使用 Scapy 抓取指定接口和端口的网络流量。

5.
获取入侵者地理位置
python
def get_geolocation(ip_address):
    try:
        gi = GeoIP.open("/usr/share/GeoIP/GeoLiteCity.dat", GeoIP.GEOIP_STANDARD)
        record = gi.record_by_addr(ip_address)
        if record:
            return f"{record['city']}, {record['country_name']}"
        else:
            return "未知位置"
    except Exception as e:
        return f"获取地理位置失败: {str(e)}"
使用 GeoIP 库获取 IP 地址的地理位置信息,并处理可能的异常。

6.
验证 IP 地址
python
def verify_ip(ip_address):
    try:
        w = whois.whois(ip_address)
        if w and w.get('nets'):
            return w.nets[0].get('description', "未知描述")
        else:
            return "未知描述"
    except Exception as e:
        return f"验证 IP 失败: {str(e)}"
使用 Whois 查询 IP 地址的相关信息,并处理可能的异常。

7.
生成报告
python
def generate_report(suspicious_activities, report_file):
    print(f"生成报告到 {report_file}...")
    with open(report_file, 'w') as file:
        file.write("可疑活动报告\n")
        file.write("=" * 30 + "\n")
        file.write(f"生成时间: {datetime.datetime.now()}\n")
        file.write("\n")
        file.write("时间戳\tIP 地址\t地理位置\t描述\t日志条目\n")
        file.write("-" * 80 + "\n")
        for activity in suspicious_activities:
            geolocation = get_geolocation(activity[1])
            description = verify_ip(activity[1])
            file.write(f"{activity[0]}\t{activity[1]}\t{geolocation}\t{description}\t{activity[2]}\n")
生成包含可疑活动的详细报告。

8.
生成沙箱环境
python
def create_sandbox(ip_address):
    print(f"为 IP 地址 {ip_address} 创建沙箱...")
    sandbox_dir = f"/tmp/sandbox_{ip_address}"
    os.makedirs(sandbox_dir, exist_ok=True)
    
    # 模拟多线程和多核处理
    def simulate_computation():
        for i in range(1000000):
            pass
    
    threads = []
    for _ in range(2):
        thread = threading.Thread(target=simulate_computation)
        threads.append(thread)
        thread.start()
    
    for thread in threads:
        thread.join()
    
    with open(os.path.join(sandbox_dir, "README.txt"), 'w') as file:
        file.write(f"沙箱环境用于 IP 地址: {ip_address}\n")
        file.write("此目录被隔离以防止潜在威胁。\n")
    
    return sandbox_dir
为可疑的 IP 地址创建沙箱环境,用于隔离和分析。

9.
使用 GPU 和 CPU 加速
python
def use_gpu_acceleration(data):
    print("使用 GPU 加速...")
    with tf.device('/GPU:0'):
        result = tf.reduce_sum(data)
    return result.numpy()

def use_cpu_acceleration(data):
    print("使用 CPU 加速...")
    result = np.sum(data)
    return result
使用 TensorFlow 和 NumPy 进行 GPU 和 CPU 加速计算。

10.
自适应防护机制(太极护盾)
python
class TaiJiShield:
    def __init__(self):
        self.isolation_forest = IsolationForest(contamination=0.01)
        self.one_class_svm = OneClassSVM(nu=0.01, kernel='rbf', gamma='scale')
        self.scaler = StandardScaler()
        self.data = []
        self.model_trained = False
        self.model_path = "taiji_model.pkl"
    
    def train(self, new_data):
        self.data.extend(new_data)
        self.data = np.array(self.data)
        self.data = self.scaler.fit_transform(self.data)
        self.isolation_forest.fit(self.data)
        self.one_class_svm.fit(self.data)
        self.model_trained = True
        self.save_model()
    
    def predict(self, data):
        if not self.model_trained:
            return 1, 1
        data = np.array(data).reshape(1, -1)
        data = self.scaler.transform(data)
        isolation_forest_pred = self.isolation_forest.predict(data)
        one_class_svm_pred = self.one_class_svm.predict(data)
        return isolation_forest_pred[0], one_class_svm_pred[0]
    
    def save_model(self):
        model_data = {
            'isolation_forest': self.isolation_forest,
            'one_class_svm': self.one_class_svm,
            'scaler': self.scaler
        }
        with open(self.model_path, 'wb') as file:
            pickle.dump(model_data, file)
    
    def load_model(self):
        if os.path.exists(self.model_path):
            with open(self.model_path, 'rb') as file:
                model_data = pickle.load(file)
                self.isolation_forest = model_data['isolation_forest']
                self.one_class_svm = model_data['one_class_svm']
                self.scaler = model_data['scaler']
                self.model_trained = True
使用 Isolation Forest 和 One-Class SVM 进行异常检测,构建自适应防护机制。

11.
发送警告邮件
python
def send_warning_email(ip_address, recipient_email):
    sender_email = "your_email@example.com"
    sender_password = "your_password"
    subject = "警告:停止入侵行为"
    message = f"尊敬的用户,我们检测到您的 IP 地址 {ip_address} 正在尝试入侵我们的系统。请立即停止所有入侵行为,否则我们将采取进一步的法律行动。"
    
    msg = MIMEText(message)
    msg['From'] = sender_email
    msg['To'] = recipient_email
    msg['Subject'] = subject
    
    try:
        server = smtplib.SMTP('smtp.example.com', 587)
        server.starttls()
        server.login(sender_email, sender_password)
        server.sendmail(sender_email, recipient_email, msg.as_string())
        server.quit()
        print(f"警告邮件已发送至 {recipient_email}")
    except Exception as e:
        print(f"发送警告邮件失败: {e}")
发送警告邮件通知攻击者停止入侵行为。

12.
动态黑名单
python
def update_blacklist(ip_address):
    with open("/etc/blacklist.conf", 'a') as file:
        file.write(f"{ip_address}\n")
    subprocess.run(["sudo", "iptables", "-A", "INPUT", "-s", ip_address, "-j", "DROP"])
    subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-d", ip_address, "-j", "DROP"])
动态更新黑名单,阻止恶意 IP 地址的访问。

13.
部署蜜罐
python
def deploy_honeypot(port):
    def handle_client(client_socket):
        client_socket.send(b"Welcome to the honeypot!")
        client_socket.close()
    
    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server.bind(('0.0.0.0', port))
    server.listen(5)
    print(f"Honeypot listening on port {port}")
    
    while True:
        client_socket, addr = server.accept()
        print(f"Connection from {addr}")
        threading.Thread(target=handle_client, args=(client_socket,)).start()
部署蜜罐,吸引攻击者进入受控环境,消耗其资源并收集更多信息。

14.
动态端口跳跃
python
def dynamic_port_jumping(service_port):
    new_port = random.randint(1024, 65535)
    subprocess.run(["sudo", "iptables", "-t", "nat", "-A", "PREROUTING", "-p", "tcp", "--dport", str(service_port), "-j", "REDIRECT", "--to-port", str(new_port)])
    print(f"Service port {service_port} redirected to {new_port}")
定期改变服务监听的端口,增加攻击者的扫描难度。

15.
模拟攻击
python
def simulate_attack(ip_address):
    for _ in range(10):
        subprocess.run(["ping", "-c", "1", ip_address])
模拟攻击行为,消耗攻击者的资源。

16.
有限反击增强
python
def enhanced_limited_counterattack(ip_address):
    print(f"对 IP 地址 {ip_address} 进行增强有限反击...")
    update_blacklist(ip_address)
    deploy_honeypot(random.randint(1024, 65535))
    dynamic_port_jumping(22)
    simulate_attack(ip_address)
结合多种技术进行增强的有限反击,包括动态黑名单、蜜罐、端口跳跃和模拟攻击。

17.
数据流识别与转化
python
def transform_traffic(packets):
    transformed_packets = []
    for packet in packets:
        if packet.haslayer(scapy.IP):
            packet[scapy.IP].src = "192.168.1.100"  # 模拟正常流量
            packet[scapy.IP].dst = "192.168.1.101"
        transformed_packets.append(packet)
    return transformed_packets
使用 Scapy 模拟正常流量,将数据包的源和目标 IP 地址修改为模拟的正常流量,以迷惑攻击者。

18.
蜜罐虚拟小世界空间
python
def create_advanced_honeypot(ip_address):
    sandbox_dir = create_sandbox(ip_address)
    honeypot_port = random.randint(1024, 65535)
    threading.Thread(target=deploy_honeypot, args=(honeypot_port,)).start()
    return sandbox_dir, honeypot_port
创建更复杂的蜜罐环境,模拟真实系统,吸引攻击者进入。

19.
对冲数据流反击
python
def release_counter_traffic(packets):
    transformed_packets = transform_traffic(packets)
    for packet in transformed_packets:
        scapy.sendp(packet, iface="eth0")
生成对冲数据流,模拟正常流量,消耗攻击者的资源。

20.
失控次级蜜罐的定位、突破、引爆
python
def explode_honeypot(ip_address, sandbox_dir, honeypot_port):
    print(f"引爆蜜罐 {ip_address}:{honeypot_port}...")
    subprocess.run(["sudo", "iptables", "-A", "INPUT", "-s", ip_address, "-j", "DROP"])
    subprocess.run(["sudo", "iptables", "-A", "OUTPUT", "-d", ip_address, "-j", "DROP"])
    # 这里可以添加更多反击手段,如释放病毒、强制断开连接等
在检测到攻击者时,引爆蜜罐,阻断攻击者的连接,并可以释放更多反击手段,如释放病毒、强制断开连接等。

21.
高级防护机制
python
def advanced_protection(ip_address, data_stream):
    print(f"对 IP 地址 {ip_address} 进行高级防护...")
    # 复制数据流
    copied_data = data_stream.copy()
    
    # 反向释放对冲数据流
    release_counter_traffic(copied_data)
    
    # 模拟学习入侵者攻击方法
    def simulate_attack(data):
        # 模拟学习过程
        model = Sequential()
        model.add(Dense(64, input_dim=len(data[0]), activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(1, activation='sigmoid'))
        model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
        model.fit(data, np.zeros(len(data)), epochs=10, batch_size=32)
        return model
    
    model = simulate_attack(data_stream)
    
    # 形成沙盒等虚拟小空间进行捕捉、吞噬、拟合、强化、反击
    sandbox_dir, honeypot_port = create_advanced_honeypot(ip_address)
    
    # 发送即将失控的沙箱到对方并进行引爆
    explode_honeypot(ip_address, sandbox_dir, honeypot_port)
使用高级防护机制,包括数据流复制、模拟攻击、沙箱环境创建和发送等。

22.
主函数
python
def main():
    get_root_permission()
    
    # 配置防火墙
    configure_firewall()
    
    # 分析日志
    suspicious_activities = analyze_logs("/var/log/kern.log")
    
    # 抓取流量
    packets = capture_traffic("eth0", 22)
    
    # 生成报告
    generate_report(suspicious_activities, "suspicious_activities_report.txt")
    
    # 初始化太极护盾
    taiji_shield = TaiJiShield()
    taiji_shield.load_model()
    
    # 提取特征并训练模型
    features = []
    for activity in suspicious_activities:
        ip_address = activity[1]
        geolocation = get_geolocation(ip_address)
        description = verify_ip(ip_address)
        features.append([ip_address, geolocation, description])
    
    # 将特征转换为数值
    features = [[hash(ip), hash(geo), hash(desc)] for ip, geo, desc in features]
    taiji_shield.train(features)
    
    # 创建 GUI
    root = tk.Tk()
    root.title("安全监控系统")
    
    # 创建 Notebook
    notebook = ttk.Notebook(root)
    notebook.pack(fill='both', expand=True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yehaiwz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值