【每日一题】执行 K 次操作后的最大分数

文章讲述了如何使用贪心策略解决一个编程问题,即在执行k次操作后获取数组中最大分数,每次操作涉及从数组中选择一个数并放回ceil(num/3)的值。通过优先队列实现,时间复杂度为O(nlogn),空间复杂度也为O(logn)。文中给出了Python3版本的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tag

【贪心】【数组】【2023-10-18】


题目来源

2530. 执行 K 次操作后的最大分数


题目解读

对数组执行k次操作后可以得到的最大分数。操作指的是从数组中拿出一个数 num,分数指的是拿的这个数的值,每拿完一个数还要将 ceil(num / 3) 放回数组。


解题思路

方法一:贪心

为了获取最大的分数,每次从数组中选择最大的数 num,并将 ceil(num / 3) 加入到数组中。

为了方便取出数组中的最大值以及更新数组后的最大值,我们可以维护一个优先队列来放置数组中的元素以及更新得到的元素。建立优先队列的时间复杂度为 O ( l o g n ) O(logn) O(logn) n n n为数组 nums 的长度,空间复杂度为 O ( l o g n ) O(logn) O(logn)。从优先队列中选出最大元素的时间复杂度为 O ( 1 ) O(1) O(1)

实现代码

class Solution {
public:
    long long maxKelements(vector<int>& nums, int k) {
        long long res = 0;
        priority_queue<long long>pq;
        for(int num : nums) {
            pq.push(num);
        }
        while (k --) {
            long long tmp = pq.top();
            res += tmp;
            pq.pop();
            pq.push((tmp + 2) / 3);
        }
        return res;
    }
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度: O ( l o g n ) O(logn) O(logn)


其他语言

python3

import heapq
class Solution:
    def maxKelements(self, nums: List[int], k: int) -> int:
        pq = []
        for num in nums:
            heapq.heappush(pq, -num)
        
        res = 0
        while k:
            maxVal = heapq.heappop(pq)
            res += -maxVal
            heapq.heappush(pq, floor(maxVal / 3))
            k -= 1
        return res

写在最后

如果文章内容有任何错误或者您对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度方法,欢迎评论区交流。

最后,感谢您的阅读,如果感到有所收获的话可以给博主点一个 👍 哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wang_nn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值