通信最近开源文章笔记:基于梯度的元学习波束赋形

大家好,今天为大家介绍一篇将在通信领域会议IEEE ICC 2024上报告的文献:Energy-efficient Beamforming for RISs-aided Communications: Gradient Based Meta Learning

文章代码已开源,欢迎下载!Github Gitee 点击链接下载。

概述

在本项研究中,作者提出了一种名为基于梯度的元学习波束赋形(GBML)的方法,旨在解决多用户多输入单输出(MU-MISO)波束赋形问题。

与传统方法不同,GBML采用梯度作为神经网络的输入,而不是直接将信道矩阵输入到神经网络中。这一方法创新地结合了梯度信息与神经网络的学习能力,将优化空间进行了变换,很大程度上提高了系统的频谱效率,降低了复杂度,具有很高的应用前景。

实验结果显示,GBML不需要预训练,只需较小规模的神经网络即可达到较高的总和速率,显示出其在各种场景和设置中的鲁棒性。

背景引入

6G通信构想,伴随着更多的业务模态,需要更优的技术支持。面向更多的业务模态,需要更先进的波束赋形技术予以支撑。

6G通信构想,伴随着更多的业务模态,需要更优的技术支持。

当前,已有的算法存在着各种各样的问题。基于迭代优化的算法,如WMMSE,常常伴随着大矩阵求逆操作,这不仅伴随着复杂度较大的问题,也出现了算法不稳定的问题。另外,基于深度学习的算法,如DNN及其变种,或者一些基于MAML的方法,在多用户场景下干扰大、鲁棒性弱,性能过低。因此,需要一种更优的方法进行波束赋形。

系统模型与优化问题形成

作者考虑了一个基站(BS)拥有M个天线,通过N个反射元素的可重构智能表面(RIS)向K个单天线用户发送信号的模型。 � 代表基站与RIS之间的信道, � 代表RIS与用户之间的信道。

系统模型示意图

在这样的情况下,优化问题可以被描述为最大化频谱效率,根据香农公式有

SINR: \gamma_k = \frac{||\mathbf{h}_k^H\mathbf{\Theta G w}_k||^2}{\sigma^2 + \sum_{j \neq k}^K||\mathbf{h}_k^H\mathbf{\Theta G w}_j||^2} ,频谱效率:R(\mathbf{W,\Theta;H,G})=\sum_{k=1}^K \log_2(1+\gamma_k),

那么优化问题就是

方法介绍

算法流程

对于每一个优化器,首先基于初始值计算频谱效率,然后计算频谱效率的梯度。随后,将梯度输入神经网络,获取本轮波束赋形矩阵的差分。随后,将差分与初始值相加(相移矩阵为相位相加,等价于相乘,因为\mathbf \Theta=\text{diag}[e^{j\theta_1}, e^{j\theta_2}, \cdots, e^{j\theta_N}])。多次累计后,输出最终结果。

两个优化器结束一轮后,将输出的波束赋形矩阵用于计算和速率,用于更新神经网络的参数。

算法流程图

优化空间到梯度空间

有别于传统的直接将信道信息输入神经网络的方法,作者将和速率求导后输入神经网络,使得神经网络能够在更平滑、性质更优的空间中进行学习优化。

元学习

有别于传统方法迭代优化RIS相移矩阵和基站预编码矩阵,作者将元学习联合优化的框架应用进来。

差分整流器

在实验中,作者发现,直接将神经网络的输出用于更新相移矩阵,和速率较低且不稳定。

经过充分的观察实验,发现是因为相位的 2� 周期性、不单调性导致其在差分加和的过程中不稳定。为了解决这个问题,作者设计了一个微分整流器,约束神经网络的输出。实验证明,这很大地提升了性能。

总结

本文提出的GBML方法,凭借其梯度-输入差分-输出机制和元学习,展现了在不完美和动态CSI场景下的强大鲁棒性,能够在实际约束条件下部署,且明显优于代表性的传统方法如WMMSE。

相关链接

文章链接:https://arxiv.org/abs/2311.06861 Github仓库链接:GitHub - FenghaoZhu/GMML Gitee仓库:tp1000d/GMML

更多通信领域论文信息,请持续关注!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值