一、实验介绍
1. 实验内容
本实验将学习高斯模糊。
2. 实验要点
- 高斯模糊图像
- 使用高通滤波器测试性能
3. 实验环境
- Python 3.6.6
- numpy
- matplotlib
- cv2
二、实验步骤
import numpy as np
import matplotlib.pyplot as plt
import cv2
# 读入图像
image = cv2.imread('brain.png')
# 制作图像副本
image_copy = np.copy(image)
# 将颜色更改为RGB(从BGR)
image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB)
# 转换为灰度用于过滤
gray = cv2.cvtColor(image_copy, cv2.COLOR_RGB2GRAY)
# 创建高斯模糊图像
gray_blur = cv2.GaussianBlur(gray, (9, 9), 0)
# 高通滤波器
# 3x3 Sobel滤波器用于边缘检测
sobel_x = np.array([[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]])
sobel_y = np.array([[-1, -2, -1],
[0, 0, 0],
[1, 2, 1]])
# 使用filter2D过滤原始和模糊的灰度图像
filtered = cv2.filter2D(gray, -1, sobel_x)
filtered_blurred = cv2.filter2D(gray_blur, -1, sobel_y)
retval, binary_image = cv2.threshold(filtered_blurred, 50, 255, cv2.THRESH_BINARY)
p1 = plt.figure()
ax0 = p1.add_subplot(2, 3, 1)
plt.imshow(gray, cmap='gray')
ax1 = p1.add_subplot(2, 3, 2)
plt.imshow(gray_blur, cmap='gray')
ax2 = p1.add_subplot(2, 3, 3)
plt.imshow(filtered, cmap='gray')
ax3 = p1.add_subplot(2, 3, 4)
plt.imshow(filtered_blurred, cmap='gray')
ax4 = p1.add_subplot(2, 3, 5)
plt.imshow(binary_image, cmap='gray')
plt.show()
三、实验现象
从左往右,再从上往下依次是:原始灰度图像,高斯模糊图像,原始sobel边缘检测图像,高斯模糊sobel边缘检测图像,二值图像