Exponential Filter(指数滤波器)

Overview, time constant, and analog equivalent

The simplest filter is the exponential filter.  It is a low pass filter, intended to pass flow frequencies and attenuate high frequencies.  It has only one tuning parameter (other than the sample interval).   It requires the storage of only one variable -- the previous output.  It is an IIR (autoregressive) filter - the effects of an input change decay exponentially until the limits of displays or computer arithmetic hide it. 

In various disciplines, use of this filter is also referred to as “exponential smoothing”. In some disciplines such as investment analysis, the exponential filter is called an “Exponentially Weighted Moving Average” (EWMA), or just “Exponential Moving Average” (EMA).  This abuses the traditional ARMA “moving average” terminology of time series analysis, since there is no input history that is used - just the current input.

It is the discrete time equivalent of the “first order lag” commonly used in analog modeling of continuous-time control systems. In electrical circuits, an RC filter (filter with one resistor and one capacitor) is a first-order lag. When emphasizing the analogy to analog circuits, the single tuning parameter is the “time constant”, usually written as the lower case Greek letter Tau (τ).  In fact, the values at the discrete sample times exactly match the equivalent continuous time lag with the same time constant.  The relationship between the digital implementation and the time constant is shown in the equatio

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值