input:
4 6 1 4 2 2 1 1 9 3 4 2 2 2 3 8 1 3 1 2 3 1 2 7 2 3 4 3 2 7 20 20 20
output:
YES YES NO NO
题目大意:
给我们n层楼梯,每层楼梯上有一个怪兽,怪兽有一个健康值,我们初始位于第0层楼,并且有一个攻击点数,当我们的攻击点数大于等于怪兽的健康值时我们就可以击败怪兽,并且获取怪兽的健康值加在我们的攻击点上,我们每次可以从当前楼层往上跳1~k层,又或者从当前楼层下降一层,已经走过的楼层就不能再走了,问我们是否能够击败所有楼层上的怪兽。
解题思路:
我们首先来分析一下这个问题。因为走过的楼层不能再走,所以如果我们连续向上跳>1层楼的时候,中间肯定回有楼层没有经过,但是如果要回去只能一层一层倒退回去,这显然是做不到的,因为倒退的过程中一定回遇到之前经过的楼层,故我们可以总结一下贪心策略如下:
首先看上一层楼是否能走(能不能打败上一层的怪兽),如果可以走到上一层,更新攻击点,如果不能直接走到上一层,那么就只能进行跳跃,跳跃到能打败怪兽的一层后,一层一层往下去打怪兽,在这个过程中不断更新攻击点,然后不断循环往复即可。
但是如果单纯模拟这个过程是一定回超时的,所以我们预处理了一个“通吃”数组进行优化,通过该数组可以将上述过程优化成O(N)级别。该数组定义如下:
当i=1,chi[1]=a[1],(a数组记录的是怪兽的健康点)
当i>1时,chi[i]=max(a[i]-a[i-1],chi[i-1]-a[i],a[i])
这是一个非常神奇的数组,它表示什么意思呢?chi[i]表示到达这一层后,能够将之前所有层数怪兽从上往下依次打败的最少需要的攻击点数,知道了这个性质后,我们只需要从前往后依次遍历整个数组,判断能够打败该层怪兽后,然后将下面几层的怪兽依次打败,并更新攻击点数,这里可以对a数组记录一下前缀和,以便于快速查找一段区间和,最后还要额外判断一下当前的攻击点数是否大于最上面一层的chi数组,因为可能存在这样一种情况:我们查遍了所有楼层发现没有一层楼能走,这时我们就不能打败所有楼层的怪兽了。其他一些细节会在代码中进行解释。
上代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1e5+10;
int a[N],chi[N],s[N],t[N];
int main()
{
int T;
cin>>T;
while(T--)
{
int n,c,k;
cin>>n>>c>>k;
for(int i=1;i<=n;i++)
{
cin>>a[i];
s[i]=s[i-1]+a[i];
}
chi[1]=a[1];
for(int i=2;i<=n;i++)
chi[i]=max({a[i-1]-a[i],chi[i-1]-a[i],a[i]});
int l=0;//记录当前我们的位置
int flag=0;
for(int i=1;i<=n;i++)
{
if(chi[i]<=c)//找到一层能走的楼层
{
if(i-l>k)//看该楼层是否超出了跳跃的范围
{
flag=1;
break;
}
else
{
c+=s[i]-s[l];//更新攻击点数和我们所处的楼层
l=i;
}
}
}
if(c<chi[n])//特判上文说过的情况
flag=1;
if(flag==0)
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}
return 0;
}