2022杭电多校4 G - Climb Stairs

这篇博客介绍了如何使用动态规划和贪心策略解决一个关于楼梯怪兽的问题。给定一个楼梯,每层有怪兽和其健康值,玩家有一定攻击力,每次可上1~k层或下1层,目标是击败所有怪兽。通过预处理的“通吃”数组优化,将问题复杂度降低到O(N),并给出C++代码实现。
摘要由CSDN通过智能技术生成

input:

4
6 1 4
2 2 1 1 9 3
4 2 2
2 3 8 1
3 1 2
3 1 2
7 2 3
4 3 2 7 20 20 20

output:

YES
YES
NO
NO

题目大意:

给我们n层楼梯,每层楼梯上有一个怪兽,怪兽有一个健康值,我们初始位于第0层楼,并且有一个攻击点数,当我们的攻击点数大于等于怪兽的健康值时我们就可以击败怪兽,并且获取怪兽的健康值加在我们的攻击点上,我们每次可以从当前楼层往上跳1~k层,又或者从当前楼层下降一层,已经走过的楼层就不能再走了,问我们是否能够击败所有楼层上的怪兽。

解题思路:

我们首先来分析一下这个问题。因为走过的楼层不能再走,所以如果我们连续向上跳>1层楼的时候,中间肯定回有楼层没有经过,但是如果要回去只能一层一层倒退回去,这显然是做不到的,因为倒退的过程中一定回遇到之前经过的楼层,故我们可以总结一下贪心策略如下:

首先看上一层楼是否能走(能不能打败上一层的怪兽),如果可以走到上一层,更新攻击点,如果不能直接走到上一层,那么就只能进行跳跃,跳跃到能打败怪兽的一层后,一层一层往下去打怪兽,在这个过程中不断更新攻击点,然后不断循环往复即可。

但是如果单纯模拟这个过程是一定回超时的,所以我们预处理了一个“通吃”数组进行优化,通过该数组可以将上述过程优化成O(N)级别。该数组定义如下:

当i=1,chi[1]=a[1],(a数组记录的是怪兽的健康点)

当i>1时,chi[i]=max(a[i]-a[i-1],chi[i-1]-a[i],a[i])

这是一个非常神奇的数组,它表示什么意思呢?chi[i]表示到达这一层后,能够将之前所有层数怪兽从上往下依次打败的最少需要的攻击点数,知道了这个性质后,我们只需要从前往后依次遍历整个数组,判断能够打败该层怪兽后,然后将下面几层的怪兽依次打败,并更新攻击点数,这里可以对a数组记录一下前缀和,以便于快速查找一段区间和,最后还要额外判断一下当前的攻击点数是否大于最上面一层的chi数组,因为可能存在这样一种情况:我们查遍了所有楼层发现没有一层楼能走,这时我们就不能打败所有楼层的怪兽了。其他一些细节会在代码中进行解释。

上代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1e5+10;
int a[N],chi[N],s[N],t[N];
int main()
{
	int T;
	cin>>T;
	while(T--)
	{
		int n,c,k;
		cin>>n>>c>>k;
		for(int i=1;i<=n;i++)
		{
			cin>>a[i];
			s[i]=s[i-1]+a[i];
		}
		chi[1]=a[1];
		for(int i=2;i<=n;i++)
		chi[i]=max({a[i-1]-a[i],chi[i-1]-a[i],a[i]});
		int l=0;//记录当前我们的位置 
		int flag=0;
		for(int i=1;i<=n;i++)
		{
			if(chi[i]<=c)//找到一层能走的楼层 
			{
				if(i-l>k)//看该楼层是否超出了跳跃的范围 
				{
					flag=1;
					break;
				}
				else
				{
					c+=s[i]-s[l];//更新攻击点数和我们所处的楼层 
					l=i;
				}
			}
		 } 
		 if(c<chi[n])//特判上文说过的情况 
		 flag=1;
		 if(flag==0)
		 cout<<"YES"<<endl;
		 else
		 cout<<"NO"<<endl;
	}
	return 0;
} 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值