- 博客(9)
- 资源 (1)
- 收藏
- 关注
原创 【数据结构:KD-Tree】高维空间邻近搜索方法 KD-Tree原理详解
最近在处理路径规划问题是,数据集为路径上的重采样点。对于简单的二维空间的数据来说,需要有一个快速的算法来找到其临近点。采用传统的最一般的想法的话,很自然的会想到采用欧式空间的距离信息排序存储。但是这样会导致一个点要存储其与其他所有点的欧式距离的排序。该算法的时间复杂度为倍的n个数组的排序,如果使用一般的快排来进行,那么总的时间复杂度+欧氏距离计算时间开销.算法的效率是及其低下的。使用KD-Tree数据结构可以极大的减少时间开销。特别适用于高维空间的划分。
2024-10-18 12:13:20 1016
原创 【Pytorch】torch.cat() Pytorch中对于张量拼接函数的用法和示例以及dim=-1的应用场景
对于Pytorch.cat()函数中的dim详细举例解释。举例中的张量从形状(2,3)到(2,2,3)扩展维度均有例子理解。dim=-1的情况及其优点,以及其应用场景
2024-03-21 16:03:51 854 1
原创 【Numpy】np.random.uniform()均匀分布中的采样函数用法
从打印结果来看生成了一个三维的numpy数组,所以size的输入限制与numpy中大部分的输入限制一致,size控制返回值的形状,一个不太严谨的说法,可以参考shape函数,size接受的传参与shape函数的返回值相同。使用了list储存的维度信息,返回的同样是根据list的维度信息的numpy数组,与元组的类似,其可接受的参数与shape返回的形状中的数值也是相同的。low和high构成采样的数值区域,size为返回的样本数目规则,返回的为numpy数组类型。
2024-01-11 11:48:59 810 1
温度和气体动理论复习资料
2022-04-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人