【学习笔记】聚类分析

聚类分析的概念

聚类分析是根据在数据中发现的描述对象及其关系的信息,将数据对象分组。目的是,组内的对象相互之间是相似的(相关的),而不同组中的对象是不同的(不相关的)。组内相似性越大,组间差距越大,说明聚类效果越好。
也就是说, 聚类的目标是得到较高的簇内相似度和较低的簇间相似度,使得簇间的距离尽可能大,簇内样本与簇中心的距离尽可能小。

  • 聚类得到的簇可以用聚类中心、簇大小、簇密度和簇描述等来表示
  • 聚类中心是一个簇中所有样本点的均值(质心)
  • 簇大小表示簇中所含样本的数量
  • 簇密度表示簇中样本点的紧密程度
  • 簇描述是簇中样本的业务特征
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值