Python设计KNN算法实现对空气质量的预测

设计KNN算法实现对空气质量的预测


前言

KNN是机器学习中的分类算法,它将一个未知类别的样本归类为距离它最近的k个样本中最多数的类别。它的算法原理如下所示:
1.为了判断未知实例的类别,以所有已知类别的实例作为参照,选择一个参数K。
2.计算未知实例到到已知实例的距离,
3.将这些距离进行排序,选择前k个距离,
4.将未知实例归类为这K个最近邻样本中最多数的类别。


一、任务

设计KNN算法实现对空气质量的预测

二、knn应用

1.引入库

代码如下(示例):

from collections import Counter			
import numpy as np
import pandas as pdt

2.读入数据

这里的数据我用字典的形式存储,但一般都是用网上下载的数据集,再用CSV导入

#读数据
train_data = {
   '2019/1/1':[68,186,49,67,7,43,1.07,19,'良'],
              '2019/1/2':[80,179,58,84,8,41,0.94,24,'良'],
              '2019/1/3':[86,177,63,92,6,42,0.89,17,'良'],
              '2019/1/4':[71,175,51,87,5,44,0.9,35,'良'],
              '2019/1/5':[89,246,65,106,7,55,1.15,36,'良'],
              '2019/1/6':[113,263,84,131,7,57,1.08,23,'轻度污染'],
              '2019/1/7':[110,241,82,120,7,51,1.07,29,'中度污染'],
              '2019/1/8':[119,276,89,139,10,62,1.25,22,'轻度污染'],
              '2019/1/9':[120,331,90,129,8,50,1.02,27,'轻度污染'],
              '2019/1/10':[85,194,62,88,6,46,1.24,35,'良'],
              '2019/1/11':[91,165,67,100,7,45,1.29,35,'良']
城市空气质量是人们日常生活中非常关注的一个问题,通过数据分析和机器学习可以更加准确地预测城市空气质量变化趋势,为政府和公众提供科学依据和决策支持。下面介绍如何用 PythonKNN 算法实现城市空气质量分析与预测。 ## 数据准备 首先需要收集城市空气质量相关数据,例如空气质量指数(AQI)、二氧化硫(SO2)、氮氧化物(NOx)、PM2.5 等数据。可以从国家环境保护部等渠道获取历史数据,也可以通过传感器等设备实时采集数据。这里以北京市 2014 年至 2017 年的 AQI 数据为例。 ## 数据预处理 获取数据后需要进行数据清洗和预处理,包括删除重复数据、处理缺失值、格式转换等。同时还需要进行特征工程,提取与问题相关的特征,例如时间、天气、地理位置等。这里以时间和 AQI 为特征,对数据进行预处理和特征提取。 ## KNN 算法 KNN(k-Nearest Neighbor)算法是一种简单而有效的机器学习算法,它通过计算样本之间的距离,找到与目标样本最近的 k 个样本,然后根据这 k 个样本的标签进行预测KNN 算法可以用于分类和回归问题,这里我们将其应用于回归问题,即预测 AQI 值。 ## 代码实现 下面是用 PythonKNN 算法实现城市空气质量分析与预测的代码,其中使用了 pandas、numpy、sklearn 等常用库。 ``` import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split # 读取数据 df = pd.read_csv('aqi.csv') # 删除重复数据 df.drop_duplicates(inplace=True) # 处理缺失值 df.fillna(method='ffill', inplace=True) df.fillna(method='bfill', inplace=True) # 特征提取 df['year'] = pd.to_datetime(df['time']).dt.year df['month'] = pd.to_datetime(df['time']).dt.month df['day'] = pd.to_datetime(df['time']).dt.day X = df[['year', 'month', 'day']].values y = df['aqi'].values # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # KNN 算法 knn = KNeighborsRegressor(n_neighbors=3) knn.fit(X_train, y_train) y_pred = knn.predict(X_test) # 结果评估 print('R2 score:', knn.score(X_test, y_test)) ``` ## 结果分析 运行代码后,可以得到预测结果的 R2 分数,用于评估模型的预测精度,分数越接近 1 表示预测精度越高。可以通过调整 KNN 算法的参数和特征工程等方法来进一步提高预测精度。 以上就是用 PythonKNN 算法实现城市空气质量分析与预测的方法,希望能对大家有所帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值