设计KNN算法实现对空气质量的预测
前言
KNN是机器学习中的分类算法,它将一个未知类别的样本归类为距离它最近的k个样本中最多数的类别。它的算法原理如下所示:
1.为了判断未知实例的类别,以所有已知类别的实例作为参照,选择一个参数K。
2.计算未知实例到到已知实例的距离,
3.将这些距离进行排序,选择前k个距离,
4.将未知实例归类为这K个最近邻样本中最多数的类别。
一、任务
设计KNN算法实现对空气质量的预测
二、knn应用
1.引入库
代码如下(示例):
from collections import Counter
import numpy as np
import pandas as pdt
2.读入数据
这里的数据我用字典的形式存储,但一般都是用网上下载的数据集,再用CSV导入
#读数据
train_data = {
'2019/1/1':[68,186,49,67,7,43,1.07,19,'良'],
'2019/1/2':[80,179,58,84,8,41,0.94,24,'良'],
'2019/1/3':[86,177,63,92,6,42,0.89,17,'良'],
'2019/1/4':[71,175,51,87,5,44,0.9,35,'良'],
'2019/1/5':[89,246,65,106,7,55,1.15,36,'良'],
'2019/1/6':[113,263,84,131,7,57,1.08,23,'轻度污染'],
'2019/1/7':[110,241,82,120,7,51,1.07,29,'中度污染'],
'2019/1/8':[119,276,89,139,10,62,1.25,22,'轻度污染'],
'2019/1/9':[120,331,90,129,8,50,1.02,27,'轻度污染'],
'2019/1/10':[85,194,62,88,6,46,1.24,35,'良'],
'2019/1/11':[91,165,67,100,7,45,1.29,35,'良']