【100分】 不等式

这篇博客介绍了一种方法来处理不等式组,包括输入描述、输出描述和解题思路。解题代码中展示了如何计算不等式最大差并确保不等式成立。示例展示输入和输出格式,以及如何验证和计算不等式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不等式

题目描述

给定一组不等式,判断是否成立并输出不等式的最大差(输出浮点数的整数部分)

要求:

  1. 不等式系数为double类型,是一个二维数组。
  2. 不等式的变量为int类型,是一维数组。
  3. 不等式的目标值为double类型,是一维数组。
  4. 不等式约束为字符串数组,只能是大于、大于等于、小于、小于等于、等于。

例如:不等式组:

a11*x1+a12*x2+a13*x3+a14*x4+a15*x5<=b1 
a21*x1+a22*x2+a23*x3+a24*x4+a25*x5<=b2 
a31*x1+a32*x2+a33*x3+a34*x4+a35*x5<=b3

则不等式的最大差:

最大差=max{
(a11*x1+a12*x2+a13*x3+a14*x4+a15*x5-b1),
(a21*x1+a22*x2+a23*x3+a24*x4+a25*x5-b2),
(a31*x1+a32*x2+a33*x3+a34*X4+a
### 杰森不等式的数学定义 对于任意随机变量 \(X\) 和凸函数 \(f\),如果期望 \(\mathbb{E}[X]\) 存在,则有: \[ f\left( \mathbb{E}\left[X\right] \right) \leq \mathbb{E}\left[f(X)\right] \] 当且仅当 \(f\) 是线性函数或者 \(X\) 几乎处处等于常数时取到等号[^1]。 ### 杰森不等式的证明 为了证明该不等式,考虑一个一阶泰勒展开近似。设 \(f\) 在某一点可导,则存在某个点使得下述表达成立: \[ f(y)=f(x)+f'(x)(y-x)+(y-x)^2h(y), \quad h(y)>0 \] 由于 \(f\) 是凸函数,因此二阶导数非负,即 \(f''(x) \geq 0\)。由此可知,在任何两点间的一阶泰勒展开会给出一条位于曲线之下的直线。利用这个性质结合积形式的加权平均值得到了上述不等式的形式[^2]。 ### 杰森不等式的应用实例 此不等式广泛应用于多个学科领域,尤其是在处理涉及概率布的问题上表现突出。例如,在机器学习算法里用于推导EM算法收敛性的理论依据;或是作为工具来简化复杂模型中的目标函数求解过程。此外,在经济学中也被用来研究效用最大化等问题。 ```python import numpy as np def jensen_inequality_example(): # 定义一个简单的凸函数 def convex_function(x): return x ** 2 # 随机生成一组数据 data_points = np.random.rand(100) # 计算左侧 E(f(X)) lhs = convex_function(np.mean(data_points)) # 计算右侧 f(E(X)) rhs = np.mean([convex_function(point) for point in data_points]) print("LHS (f(E[X])):", lhs) print("RHS (E[f(X)]):", rhs) jensen_inequality_example() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小夕Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值