题目很简单:
输入第一行给出一个整数n,随后一行给出n个整数,求该数组的最大子序列和。
输出在一行给出求该数组的最大子序列和。
拿到这题,首先的想法是用两层循环,外层循环定住一个下标,内层循环为游标,每次进行求和并取最大值,这种思想并不难,时间复杂度为O(n^2),直接上代码
#include <bits/stdc++.h>
using namespace std;
int a[1005];
int main(){
int n,sum,ans = 0;
cin >> n;
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++){
sum = 0;
for(int j=i;j<n;j++){
sum += a[j]; //利用循环步长为1来计数sum
ans = max(sum,ans);
}
}
cout << ans;
return 0;
}
下面给出另一种解法,用动态规划的思想把时间复杂度降到O(n),顺序累加,加和为负数则重置sum,否则尝试更新最大值,细节见代码:
#include <bits/stdc++.h>
using namespace std;
int a[1005];
int main() {
int n;
cin >> n;
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
int sum = 0,ans = 0;
for(int i=0;i<n;i++) {
sum += a[i];//先将当前的数加入sum
if(sum<=0) sum = 0;//计入后若sum为负数,则将sum置为0,继续计算下一个数
else ans = max(sum,ans);//若sum仍为整数,则有希望是最大值,比较"打擂"。
}
cout << ans << endl;
return 0;
}
但是以上代码仍有不足之处,当数组中所有数都为负数时,无法准确求出最大子序列和,因此要在原有基础上加一些判断,并将最大值初始化为题目范围能触及到的最小值,细节见代码:
#include <bits/stdc++.h>
using namespace std;
int a[1005];
int main() {
int n;
cin >> n;
int sum = 0,ans = -0x7fffffff;
for(int i=0;i<n;i++) {
scanf("%d",&a[i]);
ans = max(ans,a[i]);//读入的同时记录数组最大值
}
if(ans<0) cout << ans << endl;//如果数组最大值为负数,则ans就是答案
else {
for(int i=0;i<n;i++) {
sum += a[i];
if(sum<0) sum = 0;
else ans = max(sum,ans);
}
cout << ans << endl;
}
return 0;
}
这样就完美啦。