目录
前言
虽然该篇标题和以前一样属于快乐系列,但是笔者认为重积分的难度还是偏高的,尤其是笔者最近做了不少笔者觉得噩梦难度的题目(又爱又恨555)
重积分笔者觉得,难点在于积分域和计算,积分域关系到重积分计算的难度,而计算则是因为重积分可以算是多个一元积分的累积分,嵌套,因此很多题目还是会考验到学生的计算能力和技巧。
话不多说,老规矩
这次依旧没有题目噢,(笔者太懒了,还得准备考试)
解题思路(无题)
一、二重积分计算
1、画出积分域草图、判断积分域是否有对称性、被积函数是否具有奇偶性,进行对应的计算和化简
2、根据积分域的形状和被积函数形式选择坐标系
3、选择累次积分的次序
4、确定积分限然后计算
二、累次积分交换次序及计算
1. 累次积分交换次序
1)由积分限确定积分域
2)画出积分域草图
3)计算交换次序后的积分限然后做累次积分计算
三、三重积分计算
大体思路基本同二重积分,值得注意的是如果才用直角坐标系的时候,可以根据积分域形状判断采取先一后二还是先二后一,而柱坐标的形式基本和二重积分的极坐标相同,球坐标则会多引入一个角变量,同时多出的半径会比极坐标多一次,即二次。