人工神经网络(ANN)模型
一、概述
人工神经网络(Artificial Neural Network,ANN),是一种模拟生物神经网络结构和功能的计算模型,它通过大量的神经元相互连接,实现对复杂数据的处理和模式识别。从本质上讲,人工神经网络是对人脑神经细胞的数学抽象,试图模仿人类大脑处理信息的方式,以解决各种实际问题。
早在上世纪八九十年代,关于人工神经网络的研究已层出不穷,但限于当时的计算能力和数据能力,未能有效地显现其优势。近十几年以来,在许多新型复杂问题上,传统机器学习技术越发地难以满足需求,而随着计算能力不断提升、大数据不断涌现,人工神经网络凸显出了越来越强大的性能,在图像识别、语音识别、自然语言处理等方面取得了巨大的成功,并从此一发不可收拾,成为机器学习技术的一个重要方向。
二、模型原理
本质上来讲,人工神经网络也就是由多个神经元连接而成的一个多层感知机,通过对外部信息的感知,经过模型的一系列计算,得到预测的输出值。
1. 人工神经元
在人工神经网络中,一个典型的人工神经元接收多个输入信号,每个输入信号都对应一个权重,权重代表了该输入信号的重要程度。这些输入信号与对应权重相乘后进行求和,再加上一个偏置项,得到的结果会通过一个激活函数进行处理。
激活函数的作用是为神经元引入非线性特性,常见的激活函数有 Sigmoid 函数、ReLU(修正线性单元)函数等。以 Sigmoid 函数为例,它将输入映射到 0 到 1 之间,能够将任意实数压缩到这个区间内,适用于二分类问题的输出层;而 ReLU 函数