目录
第一题:武功秘籍
题目描述
小明到X山洞探险,捡到一本有破损的武功秘籍(2000多页!当然是伪造的)。他注意到:书的第10页和第11页在同一张纸上,
但第11页和第12页不在同一张纸上。小明只想练习该书的第81页到第92页的武功,又不想带着整本书。请问他至少要撕下多少张纸带走?
这是个整数,请通过浏览器提交该数字,不要填写任何多余的内容。
答案:7
解释:口算即可
第二题:切面条
题目描述
一根高筋拉面,中间切一刀,可以得到2根面条。
如果先对折1次,中间切一刀,可以得到3根面条。
如果连续对折2次,中间切一刀,可以得到5根面条。
那么,连续对折10次,中间切一刀,会得到多少面条呢?
答案是个整数,请通过浏览器提交答案。不要填写任何多余的内容
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int res = (int)(Math.pow(2,n)+1);
System.out.println(res);
}
}
答案:1025
第三题.猜字母
把abcd…s共19个字母组成的序列重复拼接106次,得到长度为2014的串。接下来删除第1个字母(即开头的字母a),
以及第3个,第5个等所有奇数位置的字母。得到的新串再进行删除奇数位置字母的动作。如此下去,最后只剩下一个字母
,请写出该字母。
public class Main {
static int thesum = 0;
public static void main(String args[]) {
StringBuffer temp = new StringBuffer("abcdefghijklmnopqrs");
StringBuffer data = new StringBuffer("abcdefghijklmnopqrs");
System.out.println(data);
System.out.println("==========");
for (int i = 0; i < 106; i++)
data = data.append(temp.toString());
char a[] = new char[2014];
for (int i = 0; i < 2014; i++)
a[i] = data.charAt(i);
System.out.println(data);
int lenth = a.length;
while (lenth != 1) {//这是经典啊
int k = 0;
for (int i = 1; i < lenth; i += 2) {
a[k++] = a[i];//这也是
}
lenth = k;//这是最关键的(间接的起了缩短了数组但是实际上并没有)
}
System.out.println(a[0]);
}
}
答案:q;
第四题.大衍数列
中国古代文献中,曾记载过“大衍数列”, 主要用于解释中国传统文化中的太极衍生原理。 它的前几项是:0、2、4、8、12、18、24、32、40、50 … 其规律是:对偶数项,是序号平方再除2,奇数项,是序号平方减1再除2。 以下的代码打印出了大衍数列的前 100 项。 for(int i=1; i<100; i++) { if(____i%2==0____________) //填空 System.out.println(i*i/2); else System.out.println((i*i-1)/2);
答案:
i*2%2==0
第五题:圆周率
题目描述
数学发展历史上,圆周率的计算曾有许多有趣甚至是传奇的故事。其中许多方法都涉及无穷级数。
图1.png中所示,就是一种用连分数的形式表示的圆周率求法。
下面的程序实现了该求解方法。实际上数列的收敛对x的初始值 并不敏感。
结果打印出圆周率近似值(保留小数点后4位,并不一定与圆周率真值吻合)。
double x = 111;
for(int n = 10000; n>=0; n--){
int i = 2 * n + 1;
x = 2 + (i*i / x);
}
System.out.println(Str
ing.format("%.4f", ______________));
答案:
4/(x-1)
第六题:奇怪的分式
题目描述
上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:
1/4 乘以 8/5
小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)
老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼!
对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢?
请写出所有不同算式的个数(包括题中举例的)。
显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。
但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!
14
注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。
public class Main {
public static void main(String[] args) {
int k=0;
for (int i = 1; i <10 ; i++) {
for (int j = 1; j < 10; j++) {
if (i != j) {
for (int r = 1; r < 10; r++) {
for (int l = 1; l < 10; l++) {
if (r != l) {
//
double a = (double) (i * r) / (j * l);
double b = (double) (i * 10 + r) / (j * 10 + l);
if (a==b)
k++;
}
}
}
}
}
}
System.out.println(k);
}
}
答案:14
第七题:扑克序列
题目描述
A A 2 2 3 3 4 4, 一共4对扑克牌。请你把它们排成一行。
要求:两个A中间有1张牌,两个2之间有2张牌,两个3之间有3张牌,两个4之间有4张牌。
请填写出所有符合要求的排列中,字典序最小的那个。
例如:22AA3344 比 A2A23344 字典序小。当然,它们都不是满足要求的答案。
请通过浏览器提交答案。“A”一定不要用小写字母a,也不要用“1”代替。字符间一定不要留空格。
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
import java.util.Vector;
public class Main {
public static void main(String[] args) {
char[] a = {'A', 'A', '2', '2', '3', '3', '4', '4'};
f(a, 0);
for (String s : set) {
System.out.println(set);
}
}
static Set<String> set = new HashSet<String>();
private static void f(char[] a, int k) {
if (k == a.length) {
String s = new String(a);
if (check(s)) {
// System.out.println(s);
set.add(s);
}
}
for (int i = k; i < a.length; i++) {
char t = a[k];
a[k] = a[i];
a[i] = t;
f(a, k + 1);
t = a[k];
a[k] = a[i];
a[i] =t;
}
}
private static boolean check(String s) {
if (s.lastIndexOf('A') - s.indexOf('A') == 2
&& s.lastIndexOf('2') - s.indexOf('2') == 3
&& s.lastIndexOf('3') - s.indexOf('3') == 4
&& s.lastIndexOf('4') - s.indexOf('4') == 5) {
return true;
}
return false;
}
}
// public static void main(String[] args) {
// char [] a = {'A', 'A', '2', '2', '3', '3', '4', '4'};
// f(a,0);
// for (String s : set) {//遍历set集合,结果不多的话可以人工判断
// System.out.println(set);
// }
// }
//
// //Set集合用于去重
// static Set<String> set = new HashSet<String>();
//
// //求字符串的全排列
// private static void f(char[] a, int k) {
// if(k == a.length) {
// String s = new String(a);
// if (check(s)) {
// //System.out.println(s);
// set.add(s);
// }
// }
// for (int i = k; i < a.length; i++) {
// char t = a[k];
// a[k] = a[i];
// a[i] = t;
//
// f(a, k+1);
//
// t = a[k];
// a[k] = a[i];
// a[i] = t;
// }
// }
//
// //判断是否符合条件
// private static boolean check(String s) {
// if (s.lastIndexOf('A') - s.indexOf('A') == 2 &&
// s.lastIndexOf('2') - s.indexOf('2') == 3 &&
// s.lastIndexOf('3') - s.indexOf('3') == 4 &&
// s.lastIndexOf('4') - s.indexOf('4') == 5) {
// return true;
// }
// return false;
// }
//
// }
//
//
// public static int a[] = {1, 2, 3, 4};
// public static int b[] = new int[8];
//
// public static void main(String args[]) {
// for (int i = 0; i < 8; i++) {
// b[i] = 0;
// }
// fun(0);
// }
//
// public static void fun(int n) {
// for (int i = 0; i < 8; i++) {
// if (b[i] == 0 && (i + a[n] + 1) < 8 && b[i + a[n] + 1] == 0) {
// b[i] = b[i + a[n] + 1] = a[n];
// if (n == 3) {
// for (int j = 0; j < 8; j++) {
// System.out.print(b[j] + " ");
// }
// System.out.println();
// } else fun(n + 1);
// b[i] = b[i + a[n] + 1] = 0;
// }
// }
// }