【小菲stata】毕业论文: Stata面板数据全流程分析指南

**🌟 完整工作流**:  

1. **数据预处理** → 2. **共线性检验** → 3. **基准回归** → 4. **稳健性检验** → 5. **内生性处理** → 6. **异质性分析**  

【咨询可联系:小菲stata     全网同名!】

**🔍 一、数据预处理(必做步骤)**

* 1. 面板声明与平衡性检查

xtset id year

xtdescribe  

// 检查是否存在缺失年份

xtbalance, range(2015 2024)  

// 一键生成平衡面板(需安装xtbalance)

* 2. 异常值处理

winsor2 y x1 c1 c2 c3, cuts(1 99) replace  

// 上下1%缩尾

**💡 诊断工具**:  

- `xtsum`查看组内/组间变异程度  

- `xtline gdp if id<=10`抽查个体趋势  

* 3. 描述性分析

asdoc sum y x1 c1 c2 c3

**📈 二、基础模型构建**

* 1. 控制变量筛选(VIF检验)

reg y x1 x2 c1 c2 c3

estat vif  

// >10存在多重共线性

drop x2 if _vif_x2>10  

// 剔除高VIF变量

* 2. 双向固定效应模型

xtreg y x1 c1 c2 c3 i.year, fe vce(cluster id)

estimates store FE

**⚠️ 关键点**:  

- 行业/地区固定效应加`i.industry`或`i.region`  

- 时间趋势项可加`c.year#c.x1`  

**🧪 三、稳健性检验体系**

* 1. 替换核心变量

xtreg log_y x1_new c1 c2 c3 i.year, fe  

// 更换代理变量

* 2. 子样本回归

xtreg y x1 c1 c2 c3 if year>=2020, fe  

// 政策后时段

* 3. 动态效应检验

gen post = (year>=2020)

forvalues i=1/3 {

    gen lag`i'_post = L`i'.x1 * post

}

xtreg y L(1/3).post x1 c1 c2 c3, fe

**📉 四、面板单位根与协整检验**

* 1. LLC/IPS单位根检验(需安装xtunitroot)

xtunitroot llc y, trend lags(1)  

// 含趋势项

xtunitroot ips x1, demean lags(aic)  

// 自动选择滞后阶

* 2. 协整检验(Kao检验)

xtcointtest kao y x1 x2, trend  

// 存在趋势关系时加trend

**📚 判断标准**:  

- **p<0.05** 拒绝"存在单位根"的原假设  

- 若存在单位根,需做**一阶差分**:`gen dy = D.y`  

**🔄 五、内生性处理**

* 1. 工具变量法

xtivreg2 y (x1 = z1) c1 c2 c3, first

// 使用z1作为x1的工具变量

* 第一阶段结果

xtreg x1 z1 c1 c2 c3 i.year, fe robust

//控制时间

est store m1

* 第二阶段结果

xtivreg2 y (x1 = z1) c1 c2 c3, fe robust first endog(x1)

est store m2

* 结果展示和导出

esttab m1 m2, replace 

esttab m1 m2 using reg1.rtf, replace b(%6.3f) se(%6.3f) se ar2(3) star(* 0.1 ** 0.05 *** 0.01) compress nogap  mtitles("x1" "y")title("Table1")

* 3. 面板数据的GMM估计

// 使用系统GMM方法处理内生性

xtabond2 y L.y x1 c1 c2 c3, gmm(L.y x1, collapse) iv(c1 c2 c3, eq(diff)) twostep

// Sargan检验用于过识别限制检验

// Hansen检验用于检验工具变量的有效性

// AR(2)检验用于检验误差项的二阶自相关性

**🔍 六、异质性分析**

* 1. 分组回归

xtreg y x1 c1 c2 c3 if group==1, fe

xtreg y x1 c1 c2 c3 if group==2, fe

// 针对不同组别进行回归分析

* 2. 交互项分析

gen interaction = x1 * group

xtreg y x1 interaction c1 c2 c3, fe

// 检查交互效应

**💾 七、结果输出与报告**

* 1. 三线表输出(中文显示)

esttab FE using "result.rtf", replace ///

    b(%6.3f) t(%6.2f) ///

    star(* 0.1 ** 0.05 *** 0.01) ///

    label booktabs ///

    title("固定效应回归结果") ///

    addnotes("聚类标准误在个体层面,*** p<0.01")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值