自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 2CPP线性表

TODO:太晚了,明日调试引言:本文以线性表为例,介绍数据结构目录文章目录目录正文:2.线性表线性表的概念线性表的基本操作线性表的抽象类顺序表:顺序表的概念和设计顺序表类定义顺序表成员函数的实现总结编程实践:单链表单链表的概念和设计单链表类定义单链表成员函数实现编程实践双链表双链表的概念和设计双链表的类定义双链表成员函数实现编程实践视频知识点P1知识点数据结构研究什么?数据的逻辑结构数据结构的操作P2知识点P3知识点p4知识点P5知识点知识点P6知识点数据结构的操作P2知识点P3知识点p4知识点P5

2022-05-02 00:18:55 285 1

原创 Chapter 2 Enjoying the Benefits of Mindfulness

Chapter 2: Enjoying the Benefits of Mindfulness1. Relaxing the BodyGetting back in touchBoosting your immune systemReducing pain2. Calming the MindListening to your thoughtsMaking better decisionsComing to your sensesCreating an attentive mind3.

2022-04-26 09:06:48 153

原创 CPP排序算法

TODO:因为markdown上传图片的问题,最终版有待调试引言:本文重点介绍排序算法目录文章目录目录正文:选择排序编程实践:冒泡排序:冒泡排序的思路:完整冒泡排序的代码实现:复杂度分析插入排序:快速排序:复杂度分析:归并排序:分解阶段合并阶段复杂度分析:计数排序:正文:选择排序选择排序的基本思路是:按照1~n的顺序,将每个元素依次归位。当归位第i个元素时,我们需要选择出第i个元素到第n个元素的最小值,并且与第i个位置的元素交换。此时,1~i的元素分别为第1小到第i小的元素。当第n个

2022-04-23 23:05:40 1493

原创 C7 Using Mindfulness for Yourself and Others

引言:笔者每日阅读时间有限,本文有待完善,暂时上传C7 Using Mindfulness for Yourself and OthersMindfulness and meBefore I discovered the art of mindfulness and meditation, I was a bit of a perfectionist,I worked very hard to get the top masks at school and even when I went to t

2022-04-22 20:44:11 129

原创 T1cpp语法基础

引言:本文主题介绍CPP语法基础,首先简要介绍编程环境的配置;然后重点介绍函数和递归函数的基本原理、重点和编程实践。//因为我经过自适应测试,有一定基础,所以内容较少。

2022-04-15 22:32:19 95

原创 C8_Pytorch生态简介

总结:我们会逐步介绍PyTorch生态在图像、视频、文本等领域中的发展,针对某个领域我们选择其中有代表性的一个工具包进行详细介绍,主要包括工具包的作者或其所在机构、数据预处理工具(这块可能再引入第三方工具包)、数据扩增、常用模型结构的预定义、预训练模型权重、常用损失函数、常用评测指标、封装好的训练&测试模块,以及可视化工具。这些内容也是我们在使用对应工具包时会用到的。8.2torchvision对我比较重要...

2022-03-20 17:17:44 2838

原创 C7_PyTorch可视化

总结:我暂时只学了DNN与CNN,对于RESNET、VGG完全不了解,不过发现torch库十分强大,可视化的结果如下//我的重心还是回到C2 PyTorch基础知识和C4 实战上,学完后,该文还会更新。目录:7.1 可视化网络结构7.2 CNN卷积层可视化7.3 使用TensorBoard可视化训练过程# 7.1 torchinfo可视化网络结构# 安装方法一# !pip install torchinfo import torchvision.models as modelsfrom

2022-03-20 16:19:22 3060

原创 基础实战——FashionMNIST时装分类

第四章 基础实战——FashionMNIST时装分类经过前面三章内容的学习,我们完成了以下的内容:对PyTorch有了初步的认识学会了如何安装PyTorch以及对应的编程环境学习了PyTorch最核心的理论基础(张量&自动求导)梳理了利用PyTorch完成深度学习的主要步骤和对应实现方式现在,我们通过一个基础实战案例,将第一部分所涉及的PyTorch入门知识串起来,便于大家加深理解。同时为后续的进阶学习打好基础。我们这里的任务是对10个类别的“时装”图像进行分类,使用Fashio

2022-03-20 16:08:42 3054

原创 C6 Torch进阶训练技巧

总结:今天队伍的进度是第六章 PyTorch进阶训练技巧,主要内容见后,但因为我没打好Pytorch基础,所以我学习了 第二章Pytorch基础知识,同见后。6.1自定义损失函数PyTorch在torch.nn模块为我们提供了许多常用的损失函数,比如:MSELoss,L1Loss,BCELoss… 但是随着深度学习的发展,出现了越来越多的非官方提供的Loss,比如DiceLoss,HuberLoss,SobolevLoss… 这些Loss Function专门针对一些非通用的模型,PyTorch不能将他

2022-03-19 23:21:04 1276

原创 C5_PyTorch模型定义

之前没有学pytorch框架1-4课, 所以第一课学得很难受完成了pytorch的配置,可以选择kaggle云服务,很amazing。今天太晚了,明晚前更新链接

2022-03-16 23:44:13 166

原创 PythonThinking_T7 OOP

T7面向对象编程目录:《Python从入门到实践》第9章 类  1389.1 创建和使用类  1389.1.1 创建Dog类  1399.1.2 根据类创建实例  1409.2 使用类和实例  1429.2.1 Car类  1439.2.2 给属性指定默认值  1439.2.3 修改属性的值  1449.3 继承  1479.3.1 子类的方法__init__()  1479.3.2 Python 2.7中的继承  1499.3.3 给子类定义属性和方法  1499.3.4 重写

2022-03-02 09:26:25 543

原创 PythonThinking_FOR、IF以及while

T6总结FOR、IF以及while目录:ifif、elif、elseif嵌套forwhile分支和函数实验调试总结:1.复制代码,去除代码行数,没有解决缩进的问题,还是打算采用notepad++,正则表达式。2.jupyter notebook 闪现 connect 404 GET /static/components/3.jupyter notebook运行时代码块前出现In[]的原因:这里号的意思是代码块正在运行,还在跑,所以耐心等待就好啦,*号不是报错,是还在跑,不要慌~4.

2022-02-27 16:22:44 413

原创 PythonThinking_‘编程习惯养成与思维'

T5总结:本文主要介绍‘编程习惯养成与思维’,偏说理而非实战。因为缺乏相关代码与举例,所以在理解上很困难。所以本文进行查阅相关资料,进行理解和总结。目录:1.防御性编程与备注2.科学分析思维迭代问题逻辑代码效率3.图灵完备语言4.Debugger5.抽象化、模块化、封装代码6.如何知道运行代码的时间7.如何修复他人的代码1.防御性编程与备注以下参考资料很专业,但较难理解,日后再回顾。Python中的防御性编程 (上)来自 https://python.freelycode.c

2022-02-27 16:15:38 129

原创 PythonThinking_T4打卡

T4总结:创建函数\n函数与变量:传入参数函数与文件操作?函数return实现四则运算input#创建函数、参数个数# this one is like your scripts with argvdef print_two(*args):#?这里类似指针不太清楚 arg1, arg2 = args print(f"arg1: {arg1}, arg2: {arg2}")# ok, that *args is actually pointless, we can just

2022-02-24 23:11:07 336

原创 PythonThinking_T3打卡

Task3总结:本文分为X个部分,首先是自测部分:1.辨析了list[]、dict{}、tuple()2.list[]自测 3.dict{}自测 4.兼具列表和字典的优点的orderdict然后是常规部分,内容如下:3.5 dict字典对比list,字典更是一种索引3.6 tuple元组对比list列表,tuple内的元素不能更新3.7 bool布尔类型3.8 读写文件//这是重难点,如:from sys import argv#辨析:dict{}、list[]、tuple()#总结

2022-02-21 21:52:07 458

原创 PythonThinking_T2打卡

T2总结:1.数字运算2.字符串与文本3.列表重点:#2.5 dict 字典#list-compare:# print(stuff[1])#?索引的问题:区别于数组,这里是建立映射关系#2.2引用字符串cars=100space_in_a_car=4.0drivers=30passengers=90cars_not_driven=cars-driverscars_driven=driverscarpool_capacity=cars_driven*space_in_a_car

2022-02-18 23:01:41 160

原创 1.16李宏毅深度学习

深度学习的发展趋势深度学习的三个步骤:Step1:神经网络完全连接前馈神经网络全链接和前馈的理解深度的理解矩阵计算本质:通过隐藏层进行特征转换通过特征提取替代特征方程示例:手写数字识别Step2:模型评估损失示例总体损失:用gradient desent找到总体损失Step3:选择最优函数反向传播思考:隐藏层越多越好?普遍性定理...

2022-01-16 22:08:46 408

原创 李宏毅深度学习笔记

2022-01-14 23:44:15 273

原创 李宏毅深度学习基础

一句话:神经网络基本形式是线性加权与非线性变换,即y=h(b+w1x1+w2x2)。线性加权即b+w1x1+w2x2非线性变换:h()是激活函数文章目录回归定义和应用例子回归定义应用举例模型步骤Step 1:模型假设 - 线性模型一元线性模型(单个特征)多元线性模型(多个特征)Step 2:模型评估 - 损失函数如何判断众多模型的好坏(损失函数)Step 3:最佳模型 - 梯度下降如何筛选最优的模型(参数w,b)梯度下降推演最优模型的过程梯度下降算法在现实世界中面临的挑战w和b偏微分的计算方法如何验

2022-01-12 21:50:18 730

转载 深度学习李宏毅21春_12_Transformer_P1

Transformer_P1_Encoder变形金刚的英文就是Transformer,那Transformer也跟我们之后会,提到的BERT有非常强烈的关係,所以这边有一个BERT探出头来,代表说Transformer跟BERT,是很有关係的Sequence-to-sequence (Seq2seq)Transformer就是一个,Sequence-to-sequence的model,他的缩写,我们会写做Seq2seq,那Sequence-to-sequence的model,又是什麼呢我们之前在讲

2022-01-12 17:23:39 132

转载 深度学习李宏毅21春_19_BERT_P2

BERT P2_Fun Facts about BERTWhy does BERT work?“为什么BERT有用?”最常见的解释是,当输入一串文本时,每个文本都有一个对应的向量。对于这个向量,我们称之为embedding。它的特别之处在于,这些向量代表了输入词的含义。例如,模型输入 “台湾大学”(国立台湾大学),输出4个向量。这4个向量分别代表 “台”、“湾”、"大 "和 “学”更具体地说,如果你把这些词所对应的向量画出来,或者计算它们之间的距离你会发现,意思比较相似的词,它们的向量比较接

2022-01-12 17:22:38 191

转载 深度学习李宏毅21春_20_BERT_P3

BERT P3_GPT3除了BERT以外,还有下一个,也是鼎鼎有名的模型,就是GPT系列的模型BERT做的是填空题,GPT就是改一下我们现在在,self-supervised learning的时候,要模型做的任务Predict Next TokenGPT要做的任务是,预测接下来,会出现的token是什麼举例来说,假设你的训练资料裡面,有一个句子是台湾大学,那GPT拿到这一笔训练资料的时候,它做的事情是这样你给它BOS这个token,然后GPT output一个embedding,然后接下来,

2022-01-12 17:21:49 168

转载 深度学习李宏毅21春_18_BERT_P1

BERT 简介Self-supervised Learning每个人都应该熟悉监督学习,当我们做监督学习时,我们只有一个模型,这个模型的输入是x,输出是y。假设你今天想做情感分析,你就是让机器阅读一篇文章,而机器需要对这篇文章进行分类,是正面的还是负面的,你必须先找到大量的文章,你需要对所有的文章进行label。我们需要有标签和文章数据来训练监督模型"Self-supervised "是用另一种方式来监督,没有标签。假设我们只有一堆没有label的文章,但我们试图找到一种方法把它分成两部分

2022-01-12 17:20:58 138

转载 深度学习李宏毅21春_17_GAN_P4

GAN_P4 Learning from Unpaired Data有关GAN的最后一段,是一个GAN的神奇应用,它把GAN用在unsupervised Learning上,到目前為止,我们讲的几乎都是Supervised Learning我们要训练一个Network,Network的输入叫做X输出叫做Y,我们需要成对的资料,才有办法训练这样子的Network,但是你可能会遇到一个状况是,我们有一堆X我们有一堆Y,但X跟Y是不成对的,在这种状况下,我们有没有办法拿这样的资料,来训练Network呢,

2022-01-12 17:19:51 181

转载 深度学习李宏毅21春_16_GAN_P3

GAN_P3虽然说已经有 WGAN,但其实并不代表说,GAN 就一定特别好 Train,GAN 仍然是以,很难把它 Train 起来而闻名的,那為什麼 GAN 很难被 Train 起来?它有一个本质上困难的地方Discriminator 做的事情,是要分辨真的图片跟產生出来的,也就是假的图片的差异而 Generator 在做的事情,它是要去產生假的图片,骗过 Discriminator而事实上这两个 Network,这个 Generator 跟 Discriminator,它们是互相砥砺,才

2022-01-12 17:18:44 533

转载 深度学习李宏毅21春_14_GAN_P1

GAN_P1GenerationNetwork as Generator接下来要进入一个,新的主题 我们要讲生成这件事情到目前為止大家学到的network,都是一个function,你给他一个X就可以输出一个Y我们已经学到各式各样的,network架构,可以处理不同的X 不同的Y我们学到输入的X如果是一张图片的时候怎麼办如果是一个sequence的时候怎麼办我们也学到输出的Y可以是一个数值可以是一个类别也可以是一个sequence接下来我们要进入一个新的主题,这个新的主题

2022-01-12 17:16:54 346

原创 IAR_EW430 的使用

IAR_EW430 的使用1、启动 IAR Embedded Workbench点击开始/ 所有程序/IAR Systems/IAR Embedded Workbench for MSP430/ IAR Embedded Workbench ( 也 可 点 击 桌 面 上 创 建 的 EW430 快 捷 图 标 )软件启动后如图所示,关闭软件界面中的“Embedded Workbench Startup”对话框。2、创建一个项目EW430 以工作空间(workspace)管理各项目(projec

2021-10-30 22:28:16 2855

转载 CSDN-markdown编辑器指南

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2021-07-27 10:04:39 65

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除