深度学习的发展趋势深度学习的三个步骤:
Step1:神经网络
完全连接前馈神经网络
全链接和前馈的理解
深度的理解
矩阵计算
本质:通过隐藏层进行特征转换
通过特征提取替代特征方程
示例:手写数字识别
Step2:模型评估
损失示例
总体损失:用gradient desent找到总体损失
Step3:选择最优函数
反向传播
思考:
隐藏层越多越好?
普遍性定理
深度学习的发展趋势深度学习的三个步骤:
Step1:神经网络
完全连接前馈神经网络
全链接和前馈的理解
深度的理解
矩阵计算
本质:通过隐藏层进行特征转换
通过特征提取替代特征方程
示例:手写数字识别
Step2:模型评估
损失示例
总体损失:用gradient desent找到总体损失
Step3:选择最优函数
反向传播
思考:
隐藏层越多越好?
普遍性定理