二维差分

二维差分
如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上c,是否也可以达到O(1)的时间复杂度。答案是可以的,考虑二维差分。

a数组是b数组的前缀和数组,那么b是a的差分数组
原数组: a[i][j]
我们去构造差分数组: b[i][j]
使得a数组中a[i][j]是b数组左上角(1,1)到右下角(i,j)所包围矩形元素的和。
如何构造b数组呢?
我们去逆向思考。
同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由O(n*n)的时间复杂度优化成O(1)
已知原数组a中被选中的子矩阵为 以(x1,y1)为左上角,以(x2,y2)为右上角所围成的矩形区域;
始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i][j]的修改,会影响到a数组中从a[i][j]及往后的每一个数。
假定我们已经构造好了b数组,类比一维差分,我们执行以下操作
来使被选中的子矩阵中的每个元素的值加上c
b[x1][y1] + = c;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;

每次对b数组执行以上操作,等价于:

for(int i=x1;i<=x2;i++)
  for(int j=y1;j<=y2;j++)
    a[i][j]+=c;

我们画个图去理解一下这个过程:
在这里插入图片描述
b[x1][ y1 ] +=c ; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c。
b[x1,][y2+1]-=c ; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y1]- =c ; 对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y2+1]+=c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。
我们将上述操作封装成一个插入函数:

void insert(int x1,int y1,int x2,int y2,int c)
{     //对b数组执行插入操作,等价于对a数组中的(x1,y1)到(x2,y2)之间的元素都加上了c
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}

我们可以先假想a数组为空,那么b数组一开始也为空,但是实际上a数组并不为空,因此我们每次让以(i,j)为左上角到以(i,j)为右上角面积内元素(其实就是一个小方格的面积)去插入 c=a[i][j],等价于原数组a中(i,j) 到(i,j)范围内 加上了 a[i][j] ,因此执行n*m次插入操作,就成功构建了差分b数组.
总结:
在这里插入图片描述
代码如下:

#include<bits/stdc++.h>
#define N 1005
using namespace std;
int a[N][N],b[N][N],s[N][N],n,m,p;
void insert(int x1,int y1,int x2,int y2,int c)
{
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}
int main()
{
    scanf("%d%d%d",&n,&m,&p);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            insert(i,j,i,j,a[i][j]);
        }
    }
    for(int i=1;i<=p;i++)
    {
        int x1,y1,x2,y2,c;
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        insert(x1,y1,x2,y2,c);
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+b[i][j];
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            printf("%d ",s[i][j]);
        }
        printf("\n");
    }
    return 0;
}
二维差分是一种常用的数据结构算法巧,用于高效地处理二维矩阵区间的更新和查询操作。它可以在O(1)的时间复杂度内完成区间的更新和查询操作,相比传统的暴力遍历方法,具有更高的效率。 二维差分的基本思想是将原始矩阵转化为一个差分矩阵,差分矩阵中的每个元素表示原始矩阵中相邻元素之间的差值。通过对差分矩阵进行预处理,可以实现对原始矩阵区间的更新和查询操作。 具体来说,二维差分的操作包括两个步骤:预处理和操作。预处理阶段,需要根据原始矩阵构建差分矩阵;操作阶段,可以通过对差分矩阵的更新来实现对原始矩阵区间的更新,同时可以通过对差分矩阵的求和来实现对原始矩阵区间的查询。 下面是二维差分的基本操作: 1. 构建差分矩阵:对于原始矩阵A,构建一个差分矩阵B,其中B[i][j] = A[i][j] - A[i-1][j] - A[i][j-1] + A[i-1][j-1]。 2. 区间更新:对于原始矩阵A的一个区间[left, right] x [top, bottom],将差分矩阵B的相应位置进行更新,即B[left][top] += val,B[right+1][top] -= val,B[left][bottom+1] -= val,B[right+1][bottom+1] += val。 3. 区间查询:对于原始矩阵A的一个区间[left, right] x [top, bottom],通过求和差分矩阵B的相应位置得到区间和,即sum = B[right][bottom] - B[left-1][bottom] - B[right][top-1] + B[left-1][top-1]。 二维差分可以广泛应用于各种算法问题,例如矩阵区间求和、矩阵区间更新等。它的时间复杂度较低,适用于处理大规模的数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值