1、谓词的一般形式是:P(x1,x2,...,xn)
p为谓词名
Px | 一元谓词 |
P(x,y) | 二元谓词 |
P(x1,x2,...,xn) | n元谓词 |
2、谓词公式
(1)连接词(连词):
﹁:称为“否定”或者“非”。它表示否定位于它后面的命题。
∨:称为“析取”。它表示被它连接的两个命题具有“或”关系。
∧:称为“合取”。它表示被它连接的两个命题具有“与”关系。
→:称为“蕴涵”或者“条件”。P→Q表示“P蕴涵Q”,即表示“如果P,则Q”。其中,P称为条件的前件,Q称为条件的后件。
↔:称为“等价”或“双条件”。P↔Q表示“P当且仅当Q”。
(2)量词:
全称量词(∀x):表示“对个体域中的所有(或任一个)个体x”。
存在量词(ョx):表示“在个体域中存在个体x”。
·谓词公式的永真蕴涵
(1)假言推理:
P,P→Q--Q
即由P为真及P→Q为真,可推出Q为真
(2)拒取式推理:
﹁Q,P→Q--﹁P
即由Q为假及P→Q为真,可推出P为假
(3)假言三段论
P→Q,Q→R--P→R
(4)全程固化
(∀x)P(x)--P(y)
(5)存在固化
(ョx)P(x)--P(y)
解题步骤:
(1)消去谓词公式中的“→”和“↔”符号
(2)把否定符号移到紧靠为此的位置上
(3)变量标准化
(4)消去存在量词
(5)化为前束形
(6)化为Skolem标准形
(7)略去全称量词
(8)消去合取词
(9)子句变量标准化,即使每个子句中的变量符号不同