1.摘要
身份验证是验证用户声称的身份的过程。最近,传统的身份验证方法(如密码、令牌等)不再用于身份验证,因为它们更容易被盗用和不同类型的违规。因此,考虑了基于生物特征模式的新的认证方法,例如从心电图信号中获得的心跳模式。与其他生物识别技术不同的是,心电图可以保证人的活着,被认为是目前最准确的身份验证方法之一。本文提出了两种基于心电图的端到端深度神经网络认证模型。在第一个模型中,开发了卷积神经网络(CNN),在第二个模型中,设计了带有注意机制的剩余卷积神经网络(ResNet)用于人类身份验证。
我们使用了从两个ECG数据库(Physikalisch-Technische Bundesanstalt [PTB]和Check Your Bio-signals Here initiative [CYBHi])获得的2秒持续心电信号进行验证。我们提出的ResNet-Attention算法使用PTB和CYBHi分别达到了98.85和99.27%的准确率。结果表明,该模型的性能优于现有算法,可以应用于心电数据更加多样化的实时认证系统。
关键词:认证,生物识别,卷积神经网络,DNN, ECG,端到端结构,ResNet
2.研究介绍
心电信号可以用作生物特征。心电图是通用的,因为它是有条件的心脏活动,发生在每一个活着的人。它是独一无二的,因为它的特征因人而异。
3.材料与方法
本研究提出了两种新颖的DNN模型,该模型具有基于心电信号的端到端结构。我们的方法结合了机器学习方法的所有阶段,如预处理、特征提取和分类,而不是为每个阶段开发不同的模型。来自数据库的单个心电信号直接输入到所提出的DNN模型中。然后,我们提出的模型决定这个人是否可以访问系统(Accept)或不能(Reject)。

3.1 数据集
PTB database
•由290个科目的549个记录组成(每个科目1到5个记录)。
•受试者的年龄范围为17岁至87岁(略少于三分之二的受试者为男性,其余为女性)。
•每条记录中有15个测量信号:12个使用传统导联,其余3个使用Frank导联ECG信号。
•信号采样频率保持在1000hz。
本文使用了从PTB数据库中选取的持续时间为2秒的II型导联心电图(2000个样本脉冲)。然后使用标准化Z-score归一化对每条记录进行归一化
CYBHi database
•包括65名志愿者,其中49名男性,16名女性,平均年龄在21至41岁之间。3个月内,两会记录的主体数量为63个。
•使用两个ECG传感器收集数据。第一个传感器用两个干电极收集数据,第二个传感器用电解槽收集数据。这些传感器被设置在手掌和两个手指(食指和中指)上。
•信号采样频率保持在1000hz。
采集了一个持续时间为2秒的导联心电信号(2000个样本脉冲)。数据库使用Z-score归一化进行归一化。
3.2 CNN model
为了获得所提模型的最佳性能,我们比较了5种不同层的CNN网络结构(表1)的认证性能:


上图是使用两种数据库比较不同CNN架构的性能。

上表是所CNN模型的各个层的细节。

3.3 ResNet model
使用ResNet来使用原始心电波形进行人体身份验证。然而,由于心电记录的形态特征复杂且难以表征,仅用ResNet提取心电记录的特征并不有效和高效。因此,我们使用ResNet从原始心电图中提取局部特征,并利用注意力机制等其他网络组件来总结局部特征系列。网络由三部分组成:局部特征学习部分和全局特征学习部分以及认证部分,如下图所示

4.结果
使用两种数据库,采用10倍策略,获得的五个模型的性能总结(平均值±标准差)(最佳结果以粗体显示)

从表中可以看出,与其他架构相比,Architecture 5使用CYBHi和PTB数据库获得了最佳值(平均值)。与使用PTB数据库的其他体系结构相比,体系结构4获得了最好的结果(SD),并且在使用两个数据库时都获得了第二好的结果。
两个数据库的混淆矩阵:

使用两个数据库的ResNet的性能:

来源:Hammad M, Pławiak P, Wang K, UR Acharya. ResNet-Attention model for human authentication using ECG signals. Expert Systems. 2021;38:e12547