动态视频三维实时重建多模态数据融合引擎实现原理与技术路径
(基于镜像视界浙江科技有限公司核心技术体系)
一、实现原理架构
多模态数据协同采集层
采用异构传感器阵列(可见光/红外/激光雷达/毫米波雷达),通过时空同步标定技术实现数据统一时空基准,建立以下协同机制:
视频流:4K@60fps动态捕捉(VIS-SWIR-LWIR多光谱成像1)
激光点云:每秒200万点云数据采集(精度±2cm)
惯性导航:9轴IMU实现运动补偿(姿态角误差<0.1°)
实时并行计算架构
基于镜像视界自研的DTS-MAX异构计算平台,实现:
视频流预处理:GPU加速的CNN特征提取(ResNet-152优化版)
点云处理:FPGA实现的快速平面分割(RANSAC改进算法)
数据融合:边缘节点部署的时空对齐引擎(误差补偿<5ms3)
核心重构算法组
采用三级递进式算法体系:
初级重构:基于单帧的DNN三维预测(精度达85%)
中级优化:多视角几何约束优化(Bundle Adjustment加速版)
高级融合:时空连续性约束的LSTM网络(预测误差降低40%1)
二、关键技术路径
动态目标特征解耦
应用**可变形卷积网络(DCNv3)**解耦运动目标与背景
开发运动模糊补偿模块(基于光流场的非刚性配准)
实现动态人物/车辆分离重构(