Dynamic Programming 01 —knapsack problem(动态规划背包问题)

首先引入动态变化的含义:为什么要有动态规划?

Introduction:

 从斐波那契函数的递归中我们发现,在例子求fib(7)的过程中,我们需求得fib(5)和fib(6),而我们在求fib(6)的时候必然需要求fib(5),因此我们会重复进行两遍fib(5)的操作,所以对我们程序的时间和空间都造成巨大浪费,且此程序的时间复杂度高达O(2^n),这是非常可怕的指数型复杂度。所以我们引入了动态规划。如图所示,如果我们对fib(5)等类似以及求过的结果进行存储,那么我们的时间复杂度降至了O(n),极大程度提高了程序的效率。

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。

接下来引入最为著名的动态规划的入门问题:背包问题(knapsack problem):

问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

首先我们创建一个数组dp[i][w]代表:对前i个物品,当背包的承重为w是,所能装下的物品的最高价格。且我们很容易知道dp[0][...]和dp[...][0]等于0。而这两组数组也是我们进行动态变化的初值。

然后我们要进行判断,首先我们把物品的个数定为确定的值i,然后对w进行不断递增,对于dp[i][w]来说,他的最大值可以进行如下的讨论:

如果我们装下第i个物品,即w的值必须大于该物品的重量,然后我们装下这个物品后,剩余的空间为w-wt[i],我们就假设又拿了一个包,这个包的容量是w-wt[i],且只能装i-1个物品,那么我们就得到了此时的总价值为:该物品i的价值加上承重为w-wt[i]条件下前面i-1个物品的总价值val[i-1]+dp[i-1][w-wt[i]]

如果我们不装下第i个物品,那么我们的目标值就是除去第i个物品的最大值,即dp[i-1][w]

最后我们比较dp[i-1][w]和val[i-1]+dp[i-1][w-wt[i]]的值最大值即为dp[i][w],当w到达最大值后,i++,然后循环往复上述操作,知道dp[N][W]赋值完毕,返回dp[N][W]即可

最后附上Java代码

public class Package {
      
    	  public int knapsack(int W, int N, int[] wt, int[] val) {
    		  //W为背包容量,N为物品个数
			int [][] dp = new int[N+1][W+1];
			for(int i =1;i<=N;i++) {
				for(int w = 1;w<=W;w++) {
					if(w-wt[i-1]<0) {
						dp[i][w]=dp[i-1][w];
					}
					else {
						dp[i][w] = Math.max(dp[i-1][w-wt[i-1]]+val[i-1], dp[i-1][w]);
					}
				}
			}
    		  return dp[N][W];
    	  }
      
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值