【初识算法】-Day1

14天阅读挑战赛
努力是为了不平庸~
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!欢迎记录下你的那些努力时刻(算法学习知识点/算法题解/遇到的算法bug/等等),在分享的同时加深对于算法的理解,同时吸收他人的奇思妙想,一起见证技术er的成长~

不会算法的程序员不是合格程序员,于是我开始学习算法

算法知识点

斐波那契数列

算法题目描述

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

做题思路

方法一:

递归是会超时的,所以用动态规划

斐波那契数的边界条件是 F(0)=0F(0)=0 和 F(1)=1F(1)=1。当 n>1n>1 时,每一项的和都等于前两项的和,因此有如下递推关系:

F(n)=F(n-1)+F(n-2)
F(n)=F(n−1)+F(n−2)

由于斐波那契数存在递推关系,因此可以使用动态规划求解。动态规划的状态转移方程即为上述递推关系,边界条件为 F(0)F(0) 和 F(1)F(1)。

根据状态转移方程和边界条件,可以得到时间复杂度和空间复杂度都是 O(n)O(n) 的实现。由于 F(n)F(n) 只和 F(n-1)F(n−1) 与 F(n-2)F(n−2) 有关,因此可以使用「滚动数组思想」把空间复杂度优化成 O(1)。计算过程中,答案需要取模 1e9+7。

方法二:矩阵快速幂
方法一的时间复杂度是 O(n)O(n)。使用矩阵快速幂的方法可以降低时间复杂度。

方法一

javascript:

var fib = function(n) {
    const MOD = 1000000007;
    if (n < 2) {
        return n;
    }
    let p = 0, q = 0, r = 1;
    for (let i = 2; i <= n; ++i) {
        p = q; 
        q = r; 
        r = (p + q) % MOD;
    }
    return r;
};

java:

class Solution {
    public int fib(int n) {
        final int MOD = 1000000007;
        if (n < 2) {
            return n;
        }
        int p = 0, q = 0, r = 1;
        for (int i = 2; i <= n; ++i) {
            p = q; 
            q = r; 
            r = (p + q) % MOD;
        }
        return r;
    }
}

C#:

public class Solution {
    public int Fib(int n) {
        const int MOD = 1000000007;
        if (n < 2) {
            return n;
        }
        int p = 0, q = 0, r = 1;
        for (int i = 2; i <= n; ++i) {
            p = q; 
            q = r; 
            r = (p + q) % MOD;
        }
        return r;
    }
}

动态规划的算法复杂度

  • 时间复杂度:O(n)。

  • 空间复杂度:O(1)。

方法二

js:

var fib = function(n) {
    if (n < 2) {
        return n;
    }
    const q = [[1, 1], [1, 0]];
    const res = pow(q, n - 1);
    return res[0][0];
};

const pow = (a, n) => {
    let ret = [[1, 0], [0, 1]];
    while (n > 0) {
        if ((n & 1) === 1) {
            ret = multiply(ret, a);
        }
        n >>= 1;
        a = multiply(a, a);
    }
    return ret;
}

const multiply = (a, b) => {
    const c = new Array(2).fill(0).map(() => new Array(2).fill(0));
    for (let i = 0; i < 2; i++) {
        for (let j = 0; j < 2; j++) {
            c[i][j] = (BigInt(a[i][0]) * BigInt(b[0][j]) + BigInt(a[i][1]) * BigInt(b[1][j])) % BigInt(1000000007);
        }
    }
    return c;
}

java:

class Solution {
    static final int MOD = 1000000007;

    public int fib(int n) {
        if (n < 2) {
            return n;
        }
        int[][] q = {{1, 1}, {1, 0}};
        int[][] res = pow(q, n - 1);
        return res[0][0];
    }

    public int[][] pow(int[][] a, int n) {
        int[][] ret = {{1, 0}, {0, 1}};
        while (n > 0) {
            if ((n & 1) == 1) {
                ret = multiply(ret, a);
            }
            n >>= 1;
            a = multiply(a, a);
        }
        return ret;
    }

    public int[][] multiply(int[][] a, int[][] b) {
        int[][] c = new int[2][2];
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                c[i][j] = (int) (((long) a[i][0] * b[0][j] + (long) a[i][1] * b[1][j]) % MOD);
            }
        }
        return c;
    }
}

C#:

public class Solution {
    const int MOD = 1000000007;

    public int Fib(int n) {
        if (n < 2) {
            return n;
        }
        int[,] q = {{1, 1}, {1, 0}};
        int[,] res = Pow(q, n - 1);
        return res[0, 0];
    }

    public int[,] Pow(int[,] a, int n) {
        int[,] ret = {{1, 0}, {0, 1}};
        while (n > 0) {
            if ((n & 1) == 1) {
                ret = Multiply(ret, a);
            }
            n >>= 1;
            a = Multiply(a, a);
        }
        return ret;
    }

    public int[,] Multiply(int[,] a, int[,] b) {
        int[,] c = new int[2, 2];
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                c[i, j] = (int) (((long) a[i, 0] * b[0, j] + (long) a[i, 1] * b[1, j]) % MOD);
            }
        }
        return c;
    }
}

矩阵快速幂的算法复杂度

  • 时间复杂度:O(logn)。

  • 空间复杂度:O(1)。

读书笔记

我的算法不太行,我的数学也不太行。还有很大的进步空间哈哈哈哈

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隐藏用户y

虽然不是很有才华,但是渴望打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值