- 博客(6)
- 收藏
- 关注
原创 电影延展性预测
首先我们先来观察一下这组数据,这组数据总共只有三列,看起来比较简单,但实际上仔细观察你会发现非常多需要操作的地方。我们所需要的模块如下所示:import pandas as pdimport numpy as npfrom matplotlib import pyplot as pltimport seaborn as snsimport randomfrom plotly import toolsimport plotly.express as pxfrom plotly....
2021-12-01 20:40:36 213
原创 客户流失率问题分析
我们在该实验用到的主要模块为:import pandas as pdimport numpy as npfrom matplotlib import pyplot as pltimport seaborn as snsimport randomfrom plotly import toolsimport plotly.express as pxfrom plotly.offline import init_notebook_mode, iplot, plotimport plotly
2021-12-01 11:40:37 1072
原创 电影利润的模拟预测
本次实验的涉及要素较多主要分为以上几个比较重要的要素,主要运用到一下模块:import pandas as pdimport numpy as npfrom matplotlib import pyplot as pltimport seaborn as snsimport randomfrom plotly import toolsimport plotly.express as pxfrom plotly.offline import init_notebook_mode,...
2021-11-30 23:43:23 1227
原创 EDA探索疫情模型的建立
本次实验我们用到的主要模块有以下模块:import pandas as pdimport numpy as npfrom matplotlib import pyplot as pltimport seaborn as snsimport randomfrom plotly import toolsimport plotly.express as pxfrom plotly.offline import init_notebook_mode, iplot, plotimport...
2021-11-30 14:13:38 1261
原创 电商数据基础分析
首先我们导入这一组数据,我们其实可以先将stockcode先剔除掉然后来分析剩下的数据以供你的后续使用,我们拿到一组数据首先要做的是根据你的需求去做一个数据清洗,然后再进行可视化分析以达到你自己想要的目的我这边主要通过数据来通过两个角度进行分析,一个是从产品角度,一个是从客户的角度。一·数据清洗我们的数据名称为df_bussiness,先通过df_bussiness.describe()和df_bussiness.info()来观察他们的数据有什么异常,和我们需要考究的地方。...
2021-11-28 15:17:23 779 1
原创 电商用户数据的简单拟合分析
本次分析主要使用的模块有:numpy,matplotlib,pandas,sklearn.liner_model 中的 lineregression1.数据的读取数据分别有着:用户行为data 和vip用户行为data2.数据的分析在我们用user_behavior_data.isna().count()发现代码没有缺失值之后我们开始分析数据的类型和找到我们所需要的一些数据由于我们本次主要任务是分析用户行为所以我们的侧重点不是放在什么用户什么商品上而是应该放在用..
2021-11-26 16:44:10 1559
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人