客户流失率问题分析

本文详细介绍了对电信客户流失问题的数据分析过程,包括数据清洗、特征分析和模型构建。通过可视化发现,月费在60到80元区间时,流失客户显著增加;年费高低两端的客户流失率较低。模型使用随机森林,最终得到的准确率为0.809,召回率为0.481,预测率为0.706。
摘要由CSDN通过智能技术生成

我们在该实验用到的主要模块为:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn  as sns
import random
from plotly import tools
import plotly.express as px
from plotly.offline import init_notebook_mode, iplot, plot
import plotly.graph_objs as go  
import ast

首先我们先来看一下我们接下来要分析的这一组数据,我们需要注意的点是该组数据有21列,
所以在下面我们需要对他进行转置来更加清晰地分析这组数据。

df_train.head(3).transpose()
df_train.info()

得到的数据类型如下图所示: 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值