该文档是北京大学关于 DeepSeek 与 AIGC 应用的讲座报告,主要介绍了 DeepSeek 模型的相关知识、AIGC 的概念与应用、技术原理以及 AIGC 工具的选择方法,旨在帮助读者全面了解相关技术并合理应用。
DeepSeek - R1 详解
-
模型概述:介绍人工智能发展历程及大模型相关术语,对比 DeepSeek - R1 与其他模型性能,其在复杂逻辑推理、数学和编程任务表现优异,以低成本、开源和强推理能力脱颖而出,介绍公司背景、市场定位、技术原理及应用场景,如推理密集型任务、教育科研等领域,还提及接入的第三方应用,让读者全面认识其在 AIGC 领域的重要性和潜力。
-
技术特性与版本:阐述其通过慢思考、强化学习、蒸馏等工作原理实现推理能力提升,介绍不同版本如满血版和蒸馏版的特点及算力要求,分析其优势如理科能力强、准确率高,局限如通用能力相对弱、存在幻觉等,以及在多种应用场景中的具体应用。
-
使用方式:说明可通过 DeepSeek 官方网站、官方 app 及腾讯系等第三方服务接入使用。
AIGC 的概念和应用
-
基本概念:梳理 AIGC、AI、AGI 等术语,明确其在人工智能领域定位,介绍 AIGC 在文本、图像、音频、视频生成方面的应用,如代码生成、绘画、音乐创作、视频特效等,展示其在电商、新闻传媒、影视、游戏、教育、金融等行业的应用实践及核心价值,如提升效率、降低成本、增强创新。
-
未来趋势与挑战:探讨 AIGC 未来在生成质量提升、应用领域拓展、人机协作加强、监管框架完善等方面的发展,分析其面临的数据隐私、伦理、生成质量、就业结构变化等挑战,为应对技术变革提供参考。
AIGC 的能力揭秘
-
文本生成原理:以 GPT - 4o 为例,介绍通用大语言模型基于 Transformer 架构的生成机制,包括输入处理、上下文编码、自注意力机制、预训练和微调过程,分析其在多轮对话、语言转换、意图理解等方面的优势及知识局限、上下文窗口限制、生成幻觉等不足,并提供与 GPT 对话的方法和建议。
-
图像生成原理:以 Stable Diffusion 模型为例,解释其文本编码器、图像信息生成器和图像解码器的工作流程,揭示文生图和图生图技术的优势如降低门槛、提高效率、风格多样,局限如精确控制困难、随机性强、复杂场景理解难。
AIGC 工具选择
-
工具介绍:列举 AIGC 领域的工具类型,如聊天对话机器人、图像生成工具等,并介绍国内外代表性工具,如 DeepSeek、ChatGPT、Midjourney 等,通过对 DeepSeek - R1、Kimi、豆包、腾讯元宝等工具的特点、优势及适用场景分析,展示不同工具在推理能力、多模态支持、长文本处理和搜索效率等方面的差异。
-
选择方法:提出选择 AIGC 工具的依据,包括明确需求、评估工具性能和考虑使用成本,帮助读者做出合理选择,还介绍提升 AIGC 使用能力的方法,如建立使用清单、测试筛选和定期更新。