该文档围绕 DeepSeek 模型的私有化部署和一体机展开,系统介绍了相关知识,为不同用户提供了部署和使用 DeepSeek 模型的全面指导。
人工智能与 DeepSeek
-
大模型相关知识:介绍大模型术语、发展历程,对比生成模型与推理模型。生成模型专注通用任务,推理模型擅长复杂推理,两者在多模态支持、应用场景和用户交互体验等方面存在差异。
-
DeepSeek 公司与模型:DeepSeek 于 2023 年 7 月成立,是中国大模型七小虎之一。旗下 V2、V3 为生成模型,R1 为推理模型,各有特点和优势,R1 在数学推理和代码生成上表现出色,且开源并公布训练细节。同时介绍了模型的特点、优势、应用场景和使用方式。
个人部署 DeepSeek
-
环境准备:明确模型部署软硬件要求,参数量影响模型能力、硬件需求和运行速度,需合理匹配。介绍 Ollama 工具,包括安装步骤和环境变量配置,还涉及网络配置及注意事项。
-
模型部署:演示 Ollama 完整部署流程,包括常用命令、下载和运行模型的方法及常见问题处理。
-
前端展示:介绍多种前端展示工具,如浏览器插件、桌面应用和 Web 服务等,各自具有不同特点和适用场景。
企业部署 DeepSeek
-
企业级部署方案:Ollma 框架在多用户并发场景性能衰减,企业级生产环境推荐使用 Transformers 快速验证模型能力,vLLM 框架借助 PagedAttention 技术实现高效推理。分别介绍其部署步骤、参数说明、性能测试及常见问题解决方案,并分享企业级 70B 模型部署案例。
-
低成本部署方案:介绍 llama.cpp、KTransformers、Unsloth 动态量化三种低成本部署方案,分析其特点、性能测评结果和实现步骤。目前这些方案更适合个人或小团队研究参考,尚无法满足企业级应用要求。
DeepSeek 一体机
-
产品概述:DeepSeek 一体机融合 “算力 + 大模型 + 应用”,为企业和个人提供一站式服务,降低智能化转型门槛。
-
配置与性能:介绍国产 DeepSeek 一体机厂商情况、不同精度方案对比、推荐配置、性能数据及报价参考,以北大青鸟 AI 实验室案例展示其在教学和科研中的应用。