TDOA-GDOP计算

本文围绕TDOA - GDOP计算展开,介绍了TDOA定位方法,通过测量信号到达监测站的时间确定信号源位置。进行了基本参数计算和误差分析,利用伪逆法求解目标点定位误差,分别得出各站各分量标准差一致和不一致情况下的答案,指出定位误差与多种因素有关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TDOA-GDOP计算

背景

TDOA定位是一种利用时间差进行定位的方法。通过测量信号到达监测站的时间,可以确定信号源的距离。利用信号源到各个监测站的距离(以监测站为中心,距离为半径作圆),就能确定信号的位置。

一个目标点: E ( x , y , z ) E(x,y,z) E(x,y,z)

四个测向站: S 0 ( x 0 , y 0 , z 0 ) , S 1 ( x 1 , y 1 , z 1 ) , S 2 ( x 2 , y 2 , z 2 ) , S 3 ( x 3 , y 3 , z 3 ) , S_0(x_0,y_0,z_0),S_1(x_1,y_1,z_1),S_2(x_2,y_2,z_2),S_3(x_3,y_3,z_3), S0(x0,y0,z0),S1(x1,y1,z1),S2(x2,y2,z2),S3(x3,y3,z3),

(设定 S 0 S_0 S0站点为主站)

基本参数计算

各测向站与目标点的距离:
r i = ( x − x i ) 2 + ( y − y i ) 2 + ( z − z i ) 2 i = 0 , 1 , 2 , 3 r_i=\sqrt{(x-x_i)^2+(y-y_i)^2+(z-z_i)^2} \quad \quad i=0,1,2,3 ri=(xxi)2+(yyi)2+(zzi)2 i=0,1,2,3
各测向站与主站的距离:
△ r i = r i − r 0 = c ∗ △ t i i = 1 , 2 , 3 \triangle r_i=r_i-r_0=c*\triangle t_i \quad \quad i =1,2,3 ri=rir0=ctii=1,2,3
( △ t i \triangle t_i ti表示在接收信号过程中第 i i i个测向站与主站的接收的时间差, c c c为光速)

误差分析

假设目标定位误差为: ( d x , d y , d z ) (dx,dy,dz) (dx,dy,dz)

各站点的测量误差为: ( d x i , d y i , d z i ) i = 0 , 1 , 2 , 3 (dx_i,dy_i,dz_i) \quad i=0,1,2,3 (dxi,dyi,dzi)i=0,1,2,3

(上述各分量之间不相关)

根据误差传递原理: △ r i = r i − r 0 i = 1 , 2 , 3 \triangle r_i=r_i-r_0\quad i=1,2,3 ri=rir0i=1,2,3

等式两边同时微分:
d △ r i = ( F i x − F 0 x ) d x + ( F i y − F 0 y ) d y + ( F i z − F 0 z ) d z + ( k 0 − k i ) i = 1 , 2 , 3 d\triangle r_i=(F_{ix}-F_{0x})dx+(F_{iy}-F_{0y})dy+(F_{iz}-F_{0z})dz+(k_0-k_i) \quad i=1,2,3 dri=(FixF0x)dx+(FiyF0y)dy+(FizF0z)dz+(k0ki)i=1,2,3

{ F i x = ∂ r i ∂ x = − ∂ r i ∂ x i = x − x i r i F i y = ∂ r i ∂ y = − ∂ r i ∂ y i = y − y i r i F i z = ∂ r i ∂ z = − ∂ r i ∂ z i = z − z i r i k i = F i x d x i + F i y d y i + F i z d z i i = 1 , 2 , 3 \begin{cases} F_{ix}=\frac{\partial r_i}{\partial x}=-\frac{\partial r_i}{\partial x_i}=\frac{x-x_i}{r_i} \\ F_{iy}=\frac{\partial r_i}{\partial y}=-\frac{\partial r_i}{\partial y_i}=\frac{y-y_i}{r_i} \\ F_{iz}=\frac{\partial r_i}{\partial z}=-\frac{\partial r_i}{\partial z_i}=\frac{z-z_i}{r_i} \\ k_i=F_{ix}dx_i + F_{iy}dy_i + F_{iz}dz_i \end{cases} \quad \quad \quad i = 1,2,3 Fix=xri=xiri=rixxiFiy=yri=yiri=riyyiFiz=zri=ziri=rizziki=Fixdxi+Fiydyi+Fizdzii=1,2,3

F \boldsymbol{F} F矩阵如下:
F = [ x − x 1 r 1 − x − x 0 r 0 y − y 1 r 1 − y − y 0 r 0 z − z 1 r 1 − z − z 0 r 0 x − x 2 r 2 − x − x 0 r 0 y − y 2 r 2 − y − y 0 r 0 z − z 2 r 2 − z − z 0 r 0 x − x 3 r 3 − x − x 0 r 0 y − y 3 r 3 − y − y 0 r 0 z − z 3 r 3 − z − z 0 r 0 ] \boldsymbol{F} = \begin{bmatrix} \frac{x-x_1}{r_1}-\frac{x-x_0}{r_0} & \frac{y-y_1}{r_1}-\frac{y-y_0}{r_0} &\frac{z-z_1}{r_1}-\frac{z-z_0}{r_0}\\ \frac{x-x_2}{r_2}-\frac{x-x_0}{r_0} & \frac{y-y_2}{r_2}-\frac{y-y_0}{r_0} &\frac{z-z_2}{r_2}-\frac{z-z_0}{r_0}\\ \frac{x-x_3}{r_3}-\frac{x-x_0}{r_0} & \frac{y-y_3}{r_3}-\frac{y-y_0}{r_0} &\frac{z-z_3}{r_3}-\frac{z-z_0}{r_0}\\ \end{bmatrix} F= r1xx1r0xx0r2xx2r0xx0r3xx3r0xx0r1yy1r0yy0r2yy2r0yy0r3yy3r0yy0r1zz1r0zz0r2zz2r0zz0r3zz3r0zz0
将同时微分的结果表示为矩阵形式:
d △ r = F ⋅ d r + d S \boldsymbol{d\triangle r}= \boldsymbol{F}·\boldsymbol{dr}+\boldsymbol{dS} dr=Fdr+dS
d △ r \boldsymbol{d\triangle r} dr表示TDOA估计引入的误差,同时联立(2)式:
d △ r = [ d △ r 1 d △ r 2 d △ r 3 ] = [ c ∗ d ( t 1 − t 0 ) c ∗ d ( t 2 − t 0 ) c ∗ d ( t 3 − t 0 ) ] \boldsymbol{d\triangle r}= \begin{bmatrix} d \triangle r_1 \\ d \triangle r_2 \\ d \triangle r_3 \\ \end{bmatrix} = \begin{bmatrix} c*d(t_1-t_0) \\ c*d(t_2-t_0) \\ c*d(t_3-t_0) \\ \end{bmatrix} dr= dr1dr2dr3 = cd(t1t0)cd(t2t0)cd(t3t0)
d r \boldsymbol{dr} dr表示待求目标点的定位误差:
d r = [ d x d y d z ] \boldsymbol{dr}= \begin{bmatrix} d x \\ d y \\ d z \\ \end{bmatrix} dr= dxdydz
d S = [ k 0 − k 1 k 0 − k 2 k 0 − k 3 ] \boldsymbol{dS}= \begin{bmatrix} k_0-k_1 \\ k_0-k_2 \\ k_0-k_3 \\ \end{bmatrix} dS= k0k1k0k2k0k3

进一步求解

求解目标:目标点定位误差 d r \boldsymbol{dr} dr

利用伪逆法:
d r = ( F F T ) − 1 F T ( d △ r − d S ) \boldsymbol{dr} = (\boldsymbol{F}\boldsymbol{F}^T)^{-1}\boldsymbol{F}^T(\boldsymbol{d\triangle r}-\boldsymbol{dS}) dr=(FFT)1FT(drdS)
​ 由此可知,目标辐射源的定位误差与站址布局方式、接收站站址误差以及时差估计误差有关。由TDOA的公式可知:各TDOA估计都和主站相关,也就是说TDOA估计中含有相同的误差信息,因此可得出结论:测量误差在 △ r i \triangle r _i ri处的值是彼此相关的。现假设修正后的测量误差为零均值,且站址误差为恒定值,而其各误差矢量之间以及矢量各元素之间均不相关。在该情况下,定位误差的协方差矩阵可写成如下形式:
P d r = E [ d r ⋅ d r T ] \boldsymbol{P_{dr}} = E[\boldsymbol{dr}·{\boldsymbol{dr}}^T] Pdr=E[drdrT]
C = ( F F T ) − 1 F T = ( c i j ) 3 ∗ 3 \boldsymbol{C} = (\boldsymbol{F}\boldsymbol{F}^T)^{-1}\boldsymbol{F}^T=(c_{ij})_{3*3} C=(FFT)1FT=(cij)33,因此公式可化为:
P d r = E [ d r ⋅ d r T ] = C { E [ d △ r ⋅ d △ r T ] + E [ d S ⋅ d S T ] } C T \boldsymbol{P_{dr}} = E[\boldsymbol{dr}·{\boldsymbol{dr}}^T] = \boldsymbol{C}\{ E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]+E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]\}\boldsymbol{C}^T Pdr=E[drdrT]=C{E[drdrT]+E[dSdST]}CT
其中:
E [ d △ r ⋅ d △ r T ] = [ σ △ r 1 2 η 12 σ △ r 1 △ r 2 η 13 σ △ r 1 △ r 3 η 12 σ △ r 1 △ r 2 σ △ r 2 2 η 23 σ △ r 2 △ r 3 η 13 σ △ r 1 △ r 3 η 23 σ △ r 2 △ r 3 σ △ r 3 2 ] E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]=\begin{bmatrix} {\sigma^2_{\triangle r_1}} & \eta_{12} \sigma_{\triangle r_1 \triangle r_2} & \eta_{13} \sigma_{\triangle r_1 \triangle r_3} \\ \eta_{12} \sigma_{\triangle r_1 \triangle r_2} &{\sigma^2_{\triangle r_2}} & \eta_{23} \sigma_{\triangle r_2 \triangle r_3} \\ \eta_{13} \sigma_{\triangle r_1 \triangle r_3} & \eta_{23} \sigma_{\triangle r_2 \triangle r_3}&{\sigma^2_{\triangle r_3}} \\ \end{bmatrix} E[drdrT]= σr12η12σr1r2η13σr1r3η12σr1r2σr22η23σr2r3η13σr1r3η23σr2r3σr32
本质上而言, σ △ r i \sigma_{\triangle r_i} σri是测量误差 △ r i \triangle r_i ri的标准差,参考(2)实质上就是对时间测量的误差,即:
E [ d △ r ⋅ d △ r T ] = c 2 ∗ [ σ △ t 1 2 η 12 σ △ t 1 △ t 2 η 13 σ △ t 1 △ t 3 η 12 σ △ t 1 △ t 2 σ △ t 2 2 η 23 σ △ t 2 △ t 3 η 13 σ △ t 1 △ t 3 η 23 σ △ t 2 △ t 3 σ △ t 3 2 ] E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]=c^2*\begin{bmatrix} {\sigma^2_{\triangle t_1}} & \eta_{12} \sigma_{\triangle t_1 \triangle t_2} & \eta_{13} \sigma_{\triangle t_1 \triangle t_3} \\ \eta_{12} \sigma_{\triangle t_1 \triangle t_2} &{\sigma^2_{\triangle t_2}} & \eta_{23} \sigma_{\triangle t_2 \triangle t_3} \\ \eta_{13} \sigma_{\triangle t_1 \triangle t_3} & \eta_{23} \sigma_{\triangle t_2 \triangle t_3}&{\sigma^2_{\triangle t_3}} \\ \end{bmatrix} E[drdrT]=c2 σt12η12σt1t2η13σt1t3η12σt1t2σt22η23σt2t3η13σt1t3η23σt2t3σt32

令:
E [ d S ⋅ d S T ] = [ k 0 − k 1 k 0 − k 2 k 0 − k 3 ] ∗ [ k 0 − k 1 k 0 − k 2 k 0 − k 3 ] E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]=\begin{bmatrix} k_0-k_1 \\ k_0-k_2 \\ k_0-k_3 \\ \end{bmatrix}* \begin{bmatrix} k_0-k_1 \quad k_0-k_2 \quad k_0-k_3 \end{bmatrix} E[dSdST]= k0k1k0k2k0k3 [k0k1k0k2k0k3]

对上述公式(13)-(15)的部分变量进行注解:

σ △ r i \sigma_{\triangle r_i} σri:是测量误差 △ r i \triangle r_i ri的标准差

η i j \eta_{ij} ηij:是 △ r i \triangle r_i ri △ r j \triangle r_j rj的相关系数(或者描述 △ t i \triangle t_i ti △ t j \triangle t_j tj),计算公式如下:
η i j = c o v ( △ r i , △ r j ) σ △ r i ⋅ σ △ r j = c o v ( △ t i , △ t j ) σ △ t i ⋅ σ △ t j \eta_{ij} = \frac{cov(\triangle r_i,\triangle r_j)}{\sigma_{\triangle r_i}·\sigma_{\triangle r_j}}= \frac{cov(\triangle t_i,\triangle t_j)}{\sigma_{\triangle t_i}·\sigma_{\triangle t_j}} ηij=σriσrjcov(ri,rj)=σtiσtjcov(ti,tj)

得出答案(各个站各个分量标准差是一致的情况)

假设各测向站在各个分量上的标准差大小一样,故设:
σ x i 2 = σ y i 2 = σ z i 2 = σ s 2 i = 0 , 1 , 2 , 3 \sigma^2_{x_i} = \sigma^2_{y_i} = \sigma^2_{z_i} = \sigma^2_{s} \quad \quad i=0,1,2,3 σxi2=σyi2=σzi2=σs2i=0,1,2,3
同时由于之前的推导,可以得知:
F i x 2 + F i y 2 + F i z 2 = 1 i = 0 , 1 , 2 , 3 F_{ix}^2 + F_{iy}^2 + F_{iz}^2=1 \quad \quad i=0,1,2,3 Fix2+Fiy2+Fiz2=1i=0,1,2,3

即:
E [ d S ⋅ d S T ] = [ 2 σ s 2 σ s 2 σ s 2 σ s 2 2 σ s 2 σ s 2 σ s 2 σ s 2 2 σ s 2 ] E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]=\begin{bmatrix} 2\sigma^2_s & \sigma^2_s & \sigma^2_s\\ \sigma^2_s & 2\sigma^2_s & \sigma^2_s\\ \sigma^2_s & \sigma^2_s & 2\sigma^2_s\\ \end{bmatrix} E[dSdST]= 2σs2σs2σs2σs22σs2σs2σs2σs22σs2

E [ d △ r ⋅ d △ r T ] + E [ d S ⋅ d S T ] = ( α i j ) 3 ∗ 3 E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]+E[\boldsymbol{dS}·{\boldsymbol{dS}}^T] = (\alpha_{ij})_{3*3} E[drdrT]+E[dSdST]=(αij)33
即:
α i j = { c 2 ∗ σ △ t i 2 + 2 ∗ σ s 2 i = j c 2 ∗ η i j σ △ r i △ r j + σ s 2 i ≠ j \alpha_{ij}= \begin{equation} \left\{ \begin{array}{lr} c^2*\sigma^2_{\triangle t_i}+2*\sigma^2_s \quad i=j \\ c^2*\eta_{ij} \sigma_{\triangle r_i \triangle r_j}+\sigma^2_s \quad i \neq j \end{array} \right. \end{equation} αij={c2σti2+2σs2i=jc2ηijσrirj+σs2i=j
联立上述式子:
P d r = C { E [ d △ r ⋅ d △ r T ] + E [ d S ⋅ d S T ] } C T = C [ σ △ r 1 2 + 2 σ s 2 η 12 σ △ r 1 △ r 2 + σ s 2 η 13 σ △ r 1 △ r 3 + σ s 2 η 12 σ △ r 1 △ r 2 + σ s 2 σ △ r 2 2 + 2 σ s 2 η 23 σ △ r 2 △ r 3 + σ s 2 η 13 σ △ r 1 △ r 3 + σ s 2 η 23 σ △ r 2 △ r 3 + σ s 2 σ △ r 3 2 + 2 σ s 2 ] C T \boldsymbol{P_{dr}} = \boldsymbol{C}\{ E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]+E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]\}\boldsymbol{C}^T\\ =\boldsymbol{C} \begin{bmatrix} {\sigma^2_{\triangle r_1}}+2\sigma^2_s & \eta_{12} \sigma_{\triangle r_1 \triangle r_2}+\sigma^2_s & \eta_{13} \sigma_{\triangle r_1 \triangle r_3}+\sigma^2_s \\ \eta_{12} \sigma_{\triangle r_1 \triangle r_2}+\sigma^2_s &{\sigma^2_{\triangle r_2}}+2\sigma^2_s & \eta_{23} \sigma_{\triangle r_2 \triangle r_3}+\sigma^2_s \\ \eta_{13} \sigma_{\triangle r_1 \triangle r_3}+\sigma^2_s & \eta_{23} \sigma_{\triangle r_2 \triangle r_3}+\sigma^2_s&{\sigma^2_{\triangle r_3}}+2\sigma^2_s \\ \end{bmatrix}\boldsymbol{C}^T Pdr=C{E[drdrT]+E[dSdST]}CT=C σr12+2σs2η12σr1r2+σs2η13σr1r3+σs2η12σr1r2+σs2σr22+2σs2η23σr2r3+σs2η13σr1r3+σs2η23σr2r3+σs2σr32+2σs2 CT
= C [ c 2 ∗ σ △ t 1 2 + 2 σ s 2 c 2 ∗ η 12 σ △ t 1 △ t 2 + σ s 2 c 2 ∗ η 13 σ △ t 1 △ t 3 + σ s 2 c 2 ∗ η 12 σ △ t 1 △ t 2 + σ s 2 c 2 ∗ σ △ t 2 2 + 2 σ s 2 c 2 ∗ η 23 σ △ t 2 △ t 3 + σ s 2 c 2 ∗ η 13 σ △ t 1 △ t 3 + σ s 2 c 2 ∗ η 23 σ △ t 2 △ t 3 + σ s 2 c 2 ∗ σ △ t 3 2 + 2 σ s 2 ] C T = \boldsymbol{C} \begin{bmatrix} {c^2*\sigma^2_{\triangle t_1}}+2\sigma^2_s & c^2*\eta_{12} \sigma_{\triangle t_1 \triangle t_2}+\sigma^2_s & c^2*\eta_{13} \sigma_{\triangle t_1 \triangle t_3}+\sigma^2_s \\ c^2*\eta_{12} \sigma_{\triangle t_1 \triangle t_2}+\sigma^2_s &c^2*{\sigma^2_{\triangle t_2}}+2\sigma^2_s & c^2*\eta_{23} \sigma_{\triangle t_2 \triangle t_3}+\sigma^2_s \\ c^2*\eta_{13} \sigma_{\triangle t_1 \triangle t_3}+\sigma^2_s & c^2*\eta_{23} \sigma_{\triangle t_2 \triangle t_3}+\sigma^2_s&c^2*{\sigma^2_{\triangle t_3}}+2\sigma^2_s \\ \end{bmatrix} \boldsymbol{C}^T =C c2σt12+2σs2c2η12σt1t2+σs2c2η13σt1t3+σs2c2η12σt1t2+σs2c2σt22+2σs2c2η23σt2t3+σs2c2η13σt1t3+σs2c2η23σt2t3+σs2c2σt32+2σs2 CT
最终的求解结果:
G D O P = t r a c e ( P d r ) \boldsymbol{GDOP} = \sqrt{trace(\boldsymbol{P_{dr}})} GDOP=trace(Pdr)

得出答案(各个站各个分量标准差不一致的情况)

E [ d S ⋅ d S T ] = [ k 0 − k 1 k 0 − k 2 k 0 − k 3 ] ∗ [ k 0 − k 1 k 0 − k 2 k 0 − k 3 ] E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]=\begin{bmatrix} k_0-k_1 \\ k_0-k_2 \\ k_0-k_3 \\ \end{bmatrix}* \begin{bmatrix} k_0-k_1 \quad k_0-k_2 \quad k_0-k_3 \end{bmatrix} \\ E[dSdST]= k0k1k0k2k0k3 [k0k1k0k2k0k3]
= [ ( k 0 − k 1 ) 2 ( k 0 − k 1 ) ( k 0 − k 2 ) ( k 0 − k 1 ) ( k 0 − k 3 ) ( k 0 − k 1 ) ( k 0 − k 2 ) ( k 0 − k 2 ) 2 ( k 0 − k 2 ) ( k 0 − k 3 ) ( k 0 − k 1 ) ( k 0 − k 3 ) ( k 0 − k 2 ) ( k 0 − k 3 ) ( k 0 − k 3 ) 2 ] = \begin{bmatrix} (k_0-k_1)^2 & (k_0-k_1)(k_0-k_2) & (k_0-k_1)(k_0-k_3)\\ (k_0-k_1)(k_0-k_2) & (k_0-k_2)^2 & (k_0-k_2)(k_0-k_3)\\ (k_0-k_1)(k_0-k_3) & (k_0-k_2)(k_0-k_3) & (k_0-k_3)^2\\ \end{bmatrix} = (k0k1)2(k0k1)(k0k2)(k0k1)(k0k3)(k0k1)(k0k2)(k0k2)2(k0k2)(k0k3)(k0k1)(k0k3)(k0k2)(k0k3)(k0k3)2

但是那个情况是各站点本身的位置的误差,一般不进行讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值