TDOA-GDOP计算
背景
TDOA定位是一种利用时间差进行定位的方法。通过测量信号到达监测站的时间,可以确定信号源的距离。利用信号源到各个监测站的距离(以监测站为中心,距离为半径作圆),就能确定信号的位置。
一个目标点: E ( x , y , z ) E(x,y,z) E(x,y,z)
四个测向站: S 0 ( x 0 , y 0 , z 0 ) , S 1 ( x 1 , y 1 , z 1 ) , S 2 ( x 2 , y 2 , z 2 ) , S 3 ( x 3 , y 3 , z 3 ) , S_0(x_0,y_0,z_0),S_1(x_1,y_1,z_1),S_2(x_2,y_2,z_2),S_3(x_3,y_3,z_3), S0(x0,y0,z0),S1(x1,y1,z1),S2(x2,y2,z2),S3(x3,y3,z3),
(设定 S 0 S_0 S0站点为主站)
基本参数计算
各测向站与目标点的距离:
r
i
=
(
x
−
x
i
)
2
+
(
y
−
y
i
)
2
+
(
z
−
z
i
)
2
i
=
0
,
1
,
2
,
3
r_i=\sqrt{(x-x_i)^2+(y-y_i)^2+(z-z_i)^2} \quad \quad i=0,1,2,3
ri=(x−xi)2+(y−yi)2+(z−zi)2i=0,1,2,3
各测向站与主站的距离:
△
r
i
=
r
i
−
r
0
=
c
∗
△
t
i
i
=
1
,
2
,
3
\triangle r_i=r_i-r_0=c*\triangle t_i \quad \quad i =1,2,3
△ri=ri−r0=c∗△tii=1,2,3
(
△
t
i
\triangle t_i
△ti表示在接收信号过程中第
i
i
i个测向站与主站的接收的时间差,
c
c
c为光速)
误差分析
假设目标定位误差为: ( d x , d y , d z ) (dx,dy,dz) (dx,dy,dz)
各站点的测量误差为: ( d x i , d y i , d z i ) i = 0 , 1 , 2 , 3 (dx_i,dy_i,dz_i) \quad i=0,1,2,3 (dxi,dyi,dzi)i=0,1,2,3
(上述各分量之间不相关)
根据误差传递原理: △ r i = r i − r 0 i = 1 , 2 , 3 \triangle r_i=r_i-r_0\quad i=1,2,3 △ri=ri−r0i=1,2,3
等式两边同时微分:
d
△
r
i
=
(
F
i
x
−
F
0
x
)
d
x
+
(
F
i
y
−
F
0
y
)
d
y
+
(
F
i
z
−
F
0
z
)
d
z
+
(
k
0
−
k
i
)
i
=
1
,
2
,
3
d\triangle r_i=(F_{ix}-F_{0x})dx+(F_{iy}-F_{0y})dy+(F_{iz}-F_{0z})dz+(k_0-k_i) \quad i=1,2,3
d△ri=(Fix−F0x)dx+(Fiy−F0y)dy+(Fiz−F0z)dz+(k0−ki)i=1,2,3
{ F i x = ∂ r i ∂ x = − ∂ r i ∂ x i = x − x i r i F i y = ∂ r i ∂ y = − ∂ r i ∂ y i = y − y i r i F i z = ∂ r i ∂ z = − ∂ r i ∂ z i = z − z i r i k i = F i x d x i + F i y d y i + F i z d z i i = 1 , 2 , 3 \begin{cases} F_{ix}=\frac{\partial r_i}{\partial x}=-\frac{\partial r_i}{\partial x_i}=\frac{x-x_i}{r_i} \\ F_{iy}=\frac{\partial r_i}{\partial y}=-\frac{\partial r_i}{\partial y_i}=\frac{y-y_i}{r_i} \\ F_{iz}=\frac{\partial r_i}{\partial z}=-\frac{\partial r_i}{\partial z_i}=\frac{z-z_i}{r_i} \\ k_i=F_{ix}dx_i + F_{iy}dy_i + F_{iz}dz_i \end{cases} \quad \quad \quad i = 1,2,3 ⎩ ⎨ ⎧Fix=∂x∂ri=−∂xi∂ri=rix−xiFiy=∂y∂ri=−∂yi∂ri=riy−yiFiz=∂z∂ri=−∂zi∂ri=riz−ziki=Fixdxi+Fiydyi+Fizdzii=1,2,3
故
F
\boldsymbol{F}
F矩阵如下:
F
=
[
x
−
x
1
r
1
−
x
−
x
0
r
0
y
−
y
1
r
1
−
y
−
y
0
r
0
z
−
z
1
r
1
−
z
−
z
0
r
0
x
−
x
2
r
2
−
x
−
x
0
r
0
y
−
y
2
r
2
−
y
−
y
0
r
0
z
−
z
2
r
2
−
z
−
z
0
r
0
x
−
x
3
r
3
−
x
−
x
0
r
0
y
−
y
3
r
3
−
y
−
y
0
r
0
z
−
z
3
r
3
−
z
−
z
0
r
0
]
\boldsymbol{F} = \begin{bmatrix} \frac{x-x_1}{r_1}-\frac{x-x_0}{r_0} & \frac{y-y_1}{r_1}-\frac{y-y_0}{r_0} &\frac{z-z_1}{r_1}-\frac{z-z_0}{r_0}\\ \frac{x-x_2}{r_2}-\frac{x-x_0}{r_0} & \frac{y-y_2}{r_2}-\frac{y-y_0}{r_0} &\frac{z-z_2}{r_2}-\frac{z-z_0}{r_0}\\ \frac{x-x_3}{r_3}-\frac{x-x_0}{r_0} & \frac{y-y_3}{r_3}-\frac{y-y_0}{r_0} &\frac{z-z_3}{r_3}-\frac{z-z_0}{r_0}\\ \end{bmatrix}
F=
r1x−x1−r0x−x0r2x−x2−r0x−x0r3x−x3−r0x−x0r1y−y1−r0y−y0r2y−y2−r0y−y0r3y−y3−r0y−y0r1z−z1−r0z−z0r2z−z2−r0z−z0r3z−z3−r0z−z0
将同时微分的结果表示为矩阵形式:
d
△
r
=
F
⋅
d
r
+
d
S
\boldsymbol{d\triangle r}= \boldsymbol{F}·\boldsymbol{dr}+\boldsymbol{dS}
d△r=F⋅dr+dS
d
△
r
\boldsymbol{d\triangle r}
d△r表示TDOA估计引入的误差,同时联立(2)式:
d
△
r
=
[
d
△
r
1
d
△
r
2
d
△
r
3
]
=
[
c
∗
d
(
t
1
−
t
0
)
c
∗
d
(
t
2
−
t
0
)
c
∗
d
(
t
3
−
t
0
)
]
\boldsymbol{d\triangle r}= \begin{bmatrix} d \triangle r_1 \\ d \triangle r_2 \\ d \triangle r_3 \\ \end{bmatrix} = \begin{bmatrix} c*d(t_1-t_0) \\ c*d(t_2-t_0) \\ c*d(t_3-t_0) \\ \end{bmatrix}
d△r=
d△r1d△r2d△r3
=
c∗d(t1−t0)c∗d(t2−t0)c∗d(t3−t0)
d
r
\boldsymbol{dr}
dr表示待求目标点的定位误差:
d
r
=
[
d
x
d
y
d
z
]
\boldsymbol{dr}= \begin{bmatrix} d x \\ d y \\ d z \\ \end{bmatrix}
dr=
dxdydz
d
S
=
[
k
0
−
k
1
k
0
−
k
2
k
0
−
k
3
]
\boldsymbol{dS}= \begin{bmatrix} k_0-k_1 \\ k_0-k_2 \\ k_0-k_3 \\ \end{bmatrix}
dS=
k0−k1k0−k2k0−k3
进一步求解
求解目标:目标点定位误差 d r \boldsymbol{dr} dr
利用伪逆法:
d
r
=
(
F
F
T
)
−
1
F
T
(
d
△
r
−
d
S
)
\boldsymbol{dr} = (\boldsymbol{F}\boldsymbol{F}^T)^{-1}\boldsymbol{F}^T(\boldsymbol{d\triangle r}-\boldsymbol{dS})
dr=(FFT)−1FT(d△r−dS)
由此可知,目标辐射源的定位误差与站址布局方式、接收站站址误差以及时差估计误差有关。由TDOA的公式可知:各TDOA估计都和主站相关,也就是说TDOA估计中含有相同的误差信息,因此可得出结论:测量误差在
△
r
i
\triangle r _i
△ri处的值是彼此相关的。现假设修正后的测量误差为零均值,且站址误差为恒定值,而其各误差矢量之间以及矢量各元素之间均不相关。在该情况下,定位误差的协方差矩阵可写成如下形式:
P
d
r
=
E
[
d
r
⋅
d
r
T
]
\boldsymbol{P_{dr}} = E[\boldsymbol{dr}·{\boldsymbol{dr}}^T]
Pdr=E[dr⋅drT]
令
C
=
(
F
F
T
)
−
1
F
T
=
(
c
i
j
)
3
∗
3
\boldsymbol{C} = (\boldsymbol{F}\boldsymbol{F}^T)^{-1}\boldsymbol{F}^T=(c_{ij})_{3*3}
C=(FFT)−1FT=(cij)3∗3,因此公式可化为:
P
d
r
=
E
[
d
r
⋅
d
r
T
]
=
C
{
E
[
d
△
r
⋅
d
△
r
T
]
+
E
[
d
S
⋅
d
S
T
]
}
C
T
\boldsymbol{P_{dr}} = E[\boldsymbol{dr}·{\boldsymbol{dr}}^T] = \boldsymbol{C}\{ E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]+E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]\}\boldsymbol{C}^T
Pdr=E[dr⋅drT]=C{E[d△r⋅d△rT]+E[dS⋅dST]}CT
其中:
E
[
d
△
r
⋅
d
△
r
T
]
=
[
σ
△
r
1
2
η
12
σ
△
r
1
△
r
2
η
13
σ
△
r
1
△
r
3
η
12
σ
△
r
1
△
r
2
σ
△
r
2
2
η
23
σ
△
r
2
△
r
3
η
13
σ
△
r
1
△
r
3
η
23
σ
△
r
2
△
r
3
σ
△
r
3
2
]
E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]=\begin{bmatrix} {\sigma^2_{\triangle r_1}} & \eta_{12} \sigma_{\triangle r_1 \triangle r_2} & \eta_{13} \sigma_{\triangle r_1 \triangle r_3} \\ \eta_{12} \sigma_{\triangle r_1 \triangle r_2} &{\sigma^2_{\triangle r_2}} & \eta_{23} \sigma_{\triangle r_2 \triangle r_3} \\ \eta_{13} \sigma_{\triangle r_1 \triangle r_3} & \eta_{23} \sigma_{\triangle r_2 \triangle r_3}&{\sigma^2_{\triangle r_3}} \\ \end{bmatrix}
E[d△r⋅d△rT]=
σ△r12η12σ△r1△r2η13σ△r1△r3η12σ△r1△r2σ△r22η23σ△r2△r3η13σ△r1△r3η23σ△r2△r3σ△r32
本质上而言,
σ
△
r
i
\sigma_{\triangle r_i}
σ△ri是测量误差
△
r
i
\triangle r_i
△ri的标准差,参考(2)实质上就是对时间测量的误差,即:
E
[
d
△
r
⋅
d
△
r
T
]
=
c
2
∗
[
σ
△
t
1
2
η
12
σ
△
t
1
△
t
2
η
13
σ
△
t
1
△
t
3
η
12
σ
△
t
1
△
t
2
σ
△
t
2
2
η
23
σ
△
t
2
△
t
3
η
13
σ
△
t
1
△
t
3
η
23
σ
△
t
2
△
t
3
σ
△
t
3
2
]
E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]=c^2*\begin{bmatrix} {\sigma^2_{\triangle t_1}} & \eta_{12} \sigma_{\triangle t_1 \triangle t_2} & \eta_{13} \sigma_{\triangle t_1 \triangle t_3} \\ \eta_{12} \sigma_{\triangle t_1 \triangle t_2} &{\sigma^2_{\triangle t_2}} & \eta_{23} \sigma_{\triangle t_2 \triangle t_3} \\ \eta_{13} \sigma_{\triangle t_1 \triangle t_3} & \eta_{23} \sigma_{\triangle t_2 \triangle t_3}&{\sigma^2_{\triangle t_3}} \\ \end{bmatrix}
E[d△r⋅d△rT]=c2∗
σ△t12η12σ△t1△t2η13σ△t1△t3η12σ△t1△t2σ△t22η23σ△t2△t3η13σ△t1△t3η23σ△t2△t3σ△t32
令:
E
[
d
S
⋅
d
S
T
]
=
[
k
0
−
k
1
k
0
−
k
2
k
0
−
k
3
]
∗
[
k
0
−
k
1
k
0
−
k
2
k
0
−
k
3
]
E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]=\begin{bmatrix} k_0-k_1 \\ k_0-k_2 \\ k_0-k_3 \\ \end{bmatrix}* \begin{bmatrix} k_0-k_1 \quad k_0-k_2 \quad k_0-k_3 \end{bmatrix}
E[dS⋅dST]=
k0−k1k0−k2k0−k3
∗[k0−k1k0−k2k0−k3]
对上述公式(13)-(15)的部分变量进行注解:
σ △ r i \sigma_{\triangle r_i} σ△ri:是测量误差 △ r i \triangle r_i △ri的标准差
η
i
j
\eta_{ij}
ηij:是
△
r
i
\triangle r_i
△ri和
△
r
j
\triangle r_j
△rj的相关系数(或者描述
△
t
i
\triangle t_i
△ti和
△
t
j
\triangle t_j
△tj),计算公式如下:
η
i
j
=
c
o
v
(
△
r
i
,
△
r
j
)
σ
△
r
i
⋅
σ
△
r
j
=
c
o
v
(
△
t
i
,
△
t
j
)
σ
△
t
i
⋅
σ
△
t
j
\eta_{ij} = \frac{cov(\triangle r_i,\triangle r_j)}{\sigma_{\triangle r_i}·\sigma_{\triangle r_j}}= \frac{cov(\triangle t_i,\triangle t_j)}{\sigma_{\triangle t_i}·\sigma_{\triangle t_j}}
ηij=σ△ri⋅σ△rjcov(△ri,△rj)=σ△ti⋅σ△tjcov(△ti,△tj)
得出答案(各个站各个分量标准差是一致的情况)
假设各测向站在各个分量上的标准差大小一样,故设:
σ
x
i
2
=
σ
y
i
2
=
σ
z
i
2
=
σ
s
2
i
=
0
,
1
,
2
,
3
\sigma^2_{x_i} = \sigma^2_{y_i} = \sigma^2_{z_i} = \sigma^2_{s} \quad \quad i=0,1,2,3
σxi2=σyi2=σzi2=σs2i=0,1,2,3
同时由于之前的推导,可以得知:
F
i
x
2
+
F
i
y
2
+
F
i
z
2
=
1
i
=
0
,
1
,
2
,
3
F_{ix}^2 + F_{iy}^2 + F_{iz}^2=1 \quad \quad i=0,1,2,3
Fix2+Fiy2+Fiz2=1i=0,1,2,3
即:
E
[
d
S
⋅
d
S
T
]
=
[
2
σ
s
2
σ
s
2
σ
s
2
σ
s
2
2
σ
s
2
σ
s
2
σ
s
2
σ
s
2
2
σ
s
2
]
E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]=\begin{bmatrix} 2\sigma^2_s & \sigma^2_s & \sigma^2_s\\ \sigma^2_s & 2\sigma^2_s & \sigma^2_s\\ \sigma^2_s & \sigma^2_s & 2\sigma^2_s\\ \end{bmatrix}
E[dS⋅dST]=
2σs2σs2σs2σs22σs2σs2σs2σs22σs2
设
E
[
d
△
r
⋅
d
△
r
T
]
+
E
[
d
S
⋅
d
S
T
]
=
(
α
i
j
)
3
∗
3
E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]+E[\boldsymbol{dS}·{\boldsymbol{dS}}^T] = (\alpha_{ij})_{3*3}
E[d△r⋅d△rT]+E[dS⋅dST]=(αij)3∗3
即:
α
i
j
=
{
c
2
∗
σ
△
t
i
2
+
2
∗
σ
s
2
i
=
j
c
2
∗
η
i
j
σ
△
r
i
△
r
j
+
σ
s
2
i
≠
j
\alpha_{ij}= \begin{equation} \left\{ \begin{array}{lr} c^2*\sigma^2_{\triangle t_i}+2*\sigma^2_s \quad i=j \\ c^2*\eta_{ij} \sigma_{\triangle r_i \triangle r_j}+\sigma^2_s \quad i \neq j \end{array} \right. \end{equation}
αij={c2∗σ△ti2+2∗σs2i=jc2∗ηijσ△ri△rj+σs2i=j
联立上述式子:
P
d
r
=
C
{
E
[
d
△
r
⋅
d
△
r
T
]
+
E
[
d
S
⋅
d
S
T
]
}
C
T
=
C
[
σ
△
r
1
2
+
2
σ
s
2
η
12
σ
△
r
1
△
r
2
+
σ
s
2
η
13
σ
△
r
1
△
r
3
+
σ
s
2
η
12
σ
△
r
1
△
r
2
+
σ
s
2
σ
△
r
2
2
+
2
σ
s
2
η
23
σ
△
r
2
△
r
3
+
σ
s
2
η
13
σ
△
r
1
△
r
3
+
σ
s
2
η
23
σ
△
r
2
△
r
3
+
σ
s
2
σ
△
r
3
2
+
2
σ
s
2
]
C
T
\boldsymbol{P_{dr}} = \boldsymbol{C}\{ E[\boldsymbol{d\triangle r} · \boldsymbol{{d\triangle r}}^T]+E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]\}\boldsymbol{C}^T\\ =\boldsymbol{C} \begin{bmatrix} {\sigma^2_{\triangle r_1}}+2\sigma^2_s & \eta_{12} \sigma_{\triangle r_1 \triangle r_2}+\sigma^2_s & \eta_{13} \sigma_{\triangle r_1 \triangle r_3}+\sigma^2_s \\ \eta_{12} \sigma_{\triangle r_1 \triangle r_2}+\sigma^2_s &{\sigma^2_{\triangle r_2}}+2\sigma^2_s & \eta_{23} \sigma_{\triangle r_2 \triangle r_3}+\sigma^2_s \\ \eta_{13} \sigma_{\triangle r_1 \triangle r_3}+\sigma^2_s & \eta_{23} \sigma_{\triangle r_2 \triangle r_3}+\sigma^2_s&{\sigma^2_{\triangle r_3}}+2\sigma^2_s \\ \end{bmatrix}\boldsymbol{C}^T
Pdr=C{E[d△r⋅d△rT]+E[dS⋅dST]}CT=C
σ△r12+2σs2η12σ△r1△r2+σs2η13σ△r1△r3+σs2η12σ△r1△r2+σs2σ△r22+2σs2η23σ△r2△r3+σs2η13σ△r1△r3+σs2η23σ△r2△r3+σs2σ△r32+2σs2
CT
=
C
[
c
2
∗
σ
△
t
1
2
+
2
σ
s
2
c
2
∗
η
12
σ
△
t
1
△
t
2
+
σ
s
2
c
2
∗
η
13
σ
△
t
1
△
t
3
+
σ
s
2
c
2
∗
η
12
σ
△
t
1
△
t
2
+
σ
s
2
c
2
∗
σ
△
t
2
2
+
2
σ
s
2
c
2
∗
η
23
σ
△
t
2
△
t
3
+
σ
s
2
c
2
∗
η
13
σ
△
t
1
△
t
3
+
σ
s
2
c
2
∗
η
23
σ
△
t
2
△
t
3
+
σ
s
2
c
2
∗
σ
△
t
3
2
+
2
σ
s
2
]
C
T
= \boldsymbol{C} \begin{bmatrix} {c^2*\sigma^2_{\triangle t_1}}+2\sigma^2_s & c^2*\eta_{12} \sigma_{\triangle t_1 \triangle t_2}+\sigma^2_s & c^2*\eta_{13} \sigma_{\triangle t_1 \triangle t_3}+\sigma^2_s \\ c^2*\eta_{12} \sigma_{\triangle t_1 \triangle t_2}+\sigma^2_s &c^2*{\sigma^2_{\triangle t_2}}+2\sigma^2_s & c^2*\eta_{23} \sigma_{\triangle t_2 \triangle t_3}+\sigma^2_s \\ c^2*\eta_{13} \sigma_{\triangle t_1 \triangle t_3}+\sigma^2_s & c^2*\eta_{23} \sigma_{\triangle t_2 \triangle t_3}+\sigma^2_s&c^2*{\sigma^2_{\triangle t_3}}+2\sigma^2_s \\ \end{bmatrix} \boldsymbol{C}^T
=C
c2∗σ△t12+2σs2c2∗η12σ△t1△t2+σs2c2∗η13σ△t1△t3+σs2c2∗η12σ△t1△t2+σs2c2∗σ△t22+2σs2c2∗η23σ△t2△t3+σs2c2∗η13σ△t1△t3+σs2c2∗η23σ△t2△t3+σs2c2∗σ△t32+2σs2
CT
最终的求解结果:
G
D
O
P
=
t
r
a
c
e
(
P
d
r
)
\boldsymbol{GDOP} = \sqrt{trace(\boldsymbol{P_{dr}})}
GDOP=trace(Pdr)
得出答案(各个站各个分量标准差不一致的情况)
E
[
d
S
⋅
d
S
T
]
=
[
k
0
−
k
1
k
0
−
k
2
k
0
−
k
3
]
∗
[
k
0
−
k
1
k
0
−
k
2
k
0
−
k
3
]
E[\boldsymbol{dS}·{\boldsymbol{dS}}^T]=\begin{bmatrix} k_0-k_1 \\ k_0-k_2 \\ k_0-k_3 \\ \end{bmatrix}* \begin{bmatrix} k_0-k_1 \quad k_0-k_2 \quad k_0-k_3 \end{bmatrix} \\
E[dS⋅dST]=
k0−k1k0−k2k0−k3
∗[k0−k1k0−k2k0−k3]
=
[
(
k
0
−
k
1
)
2
(
k
0
−
k
1
)
(
k
0
−
k
2
)
(
k
0
−
k
1
)
(
k
0
−
k
3
)
(
k
0
−
k
1
)
(
k
0
−
k
2
)
(
k
0
−
k
2
)
2
(
k
0
−
k
2
)
(
k
0
−
k
3
)
(
k
0
−
k
1
)
(
k
0
−
k
3
)
(
k
0
−
k
2
)
(
k
0
−
k
3
)
(
k
0
−
k
3
)
2
]
= \begin{bmatrix} (k_0-k_1)^2 & (k_0-k_1)(k_0-k_2) & (k_0-k_1)(k_0-k_3)\\ (k_0-k_1)(k_0-k_2) & (k_0-k_2)^2 & (k_0-k_2)(k_0-k_3)\\ (k_0-k_1)(k_0-k_3) & (k_0-k_2)(k_0-k_3) & (k_0-k_3)^2\\ \end{bmatrix}
=
(k0−k1)2(k0−k1)(k0−k2)(k0−k1)(k0−k3)(k0−k1)(k0−k2)(k0−k2)2(k0−k2)(k0−k3)(k0−k1)(k0−k3)(k0−k2)(k0−k3)(k0−k3)2
但是那个情况是各站点本身的位置的误差,一般不进行讨论。