龟兔赛跑
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 34341 Accepted Submission(s): 12315
Problem Description
据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度(VR m/s)一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。
最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
Input
本题目包含多组测试,请处理到文件结束。每个测试包括四行:
第一行是一个整数L代表跑道的总长度
第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L
其中每个数都在32位整型范围之内。
第一行是一个整数L代表跑道的总长度
第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L
其中每个数都在32位整型范围之内。
Output
当乌龟有可能赢的时候输出一行 “What a pity rabbit!"。否则输出一行"Good job,rabbit!";
题目数据保证不会出现乌龟和兔子同时到达的情况。
题目数据保证不会出现乌龟和兔子同时到达的情况。
Sample Input
100 3 20 5 5 8 2 10 40 60 100 3 60 5 5 8 2 10 40 60
Sample Output
Good job,rabbit! What a pity rabbit!
解题思路:运用 动态规划 方法 求乌龟到达终点需花的最短时间。容易得知,要求到达终点的最短时间,需要求得到达第N-1个充电站的最短时间,而要求到达第N-1个充电站的最短时间,则需要求得到达第N-2个充电站的最短时间.........由此,我们大胆猜测
DP[i] 为 乌龟到达充电站i的最短时间。
为了便于处理问题,我们不妨将
起点看作为充电站0、终点看作为充电站N-1。并且尝试在DP[i-1]与DP[i]之间建立递推关系来解决问题,但事实上,我们难以确定当乌龟花费最短时间到达充电站i-1时,还有多少余电、能否撑到充电站i,还是说必须充电才能更快、或者是脚踩车甚至比骑车更快。所以,这里似乎难以找到递推关系。
不妨先继续逆向思考,乌龟在到达充电站i之前,或许会在
充电站j充过电,并且这是她这一程
最后一次充电,那么乌龟比赛花费的总时间可以表示为
DP[j] + from_to_noCharge(j,i) + T (if j != 0)
或 DP[j] + from_to_noCharge(j,i) (if j == 0)
即
乌龟到达充电站j花费的最短时间 + 从充电站j到达充电站i(中途不再充电)所花费的时间。
简单来说,就是通过 枚举
乌龟最后一次充电的所在充电站(充电站J) 来求 DP[i]。
C代码展示
由于主要部分的双层循环内,DP[j] 表示的是乌龟到达充电站j花费的最短时间,且充电站J是乌龟最后一次充电的所在充电站,所以 如果充电站J不是充电站0(起点),则需要再加上充电花费的时间。
#include<stdio.h>
#define ll long long
#define MAX 0x7fffffff
ll L; //跑道总长度
ll N; //充电站个数
ll C; //电车充满电后可以行驶的距离
ll T; //每次充电所需要的时间
ll VR,VT1,VT2; //VR - 兔子的跑步速度, VT1 - 乌龟开电动车的速度, VT2 - 乌龟脚踩车的速度
ll Dist[110]; //各个充电站距离跑道起点的距离
double min(double a,double b){
if(a < b) return a;
else return b;
}
double from_to_noCharge(ll j,ll i){
double d = Dist[i] - Dist[j]; //充电站j与充电站i之间的距离
double Time_All_VT1 = d / VT1; //电够用,需骑车的时间
double Time_Part_VT1 = 1.0*C / VT1; //电不够用,需骑车的时间
double Time_VT2 = (d - C) / VT2; //电不够用,需踩车的时间
if(C >= d) return Time_All_VT1; //电够用
else return Time_Part_VT1 + Time_VT2; //电不够用
}
int main(){
while(~scanf("%lld",&L)){
scanf("%lld%lld%lld",&N,&C,&T);
scanf("%lld%lld%lld",&VR,&VT1,&VT2);
ll i,j;
for(i = 1;i<=N;i++) scanf("%lld",Dist+i);
Dist[0] = 0,Dist[N+1] = L;
//--------输入数据完毕--------
//将起点看做第0个充电站,将终点看做第N+1个充电站
double DP[110]; //动态规划记录到达第i个充电站所花费的最短时间。
DP[0] = 0; //自己到自己~~~ 当然是0
for(i = 1;i<=N+1;i++){ //外循环i表示待求出的DP[1~N+1],其中 DP[N+1] 为 答案
DP[i] = MAX; //初始化为巨大的数,便于启动更新DP[i] min(...,...)
for(j = 0;j<i;j++){ //内循环j表示充电站的编号j,即枚举乌龟最后一次充电所在的充电站
// 乌龟在到达充电站i之前,最后一次充电是在充电站j
if(!j) DP[i] = min(DP[i],DP[j] + from_to_noCharge(j,i));
else DP[i] = min(DP[i],DP[j] + from_to_noCharge(j,i) + T);
}
}
if(1.0*L/VR > DP[N+1]) printf("What a pity rabbit!\n");
else printf("Good job,rabbit!\n");
}
return 0;
}
但是,关于该方法或许存在一种疑问:
乌龟一定会充电吗?要是她不充电,那假设的j不就矛盾了吗?
答:不充电的情况不就没有考虑到吗?乌龟确实可能不会充电,所以有充电站0(起点)给他兜底,即
乌龟最后一次充电的地方在充电站0(起点)。