第二周的作业

  1. 写出下图的邻接矩阵。在这里插入图片描述
    E = [ 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 ] \mathbf{E}=\begin{bmatrix} 0 & 1 & 1&1\\ 1 & 0 &1 &0 \\1 & 1& 0 & 1\\1 & 0 & 1 &0\end{bmatrix} E=0111101011011010

  2. 定义无向网络
    Definition 1. A undirected net is a tuple G = ( V , w ) G=(\mathbf{V},w) G=(V,w), where V \mathbf{V} V is the set of nodes,and w : V × V → R w:\mathbf{V}\times\mathbf{V}\to \mathbb{R} w:V×VR is the weight function where w ( v i , v j ) w(v_i,v_j) w(vi,vj) is the weight of the arc ( v i , v j ) ( v_i, v_j ) (vi,vj),and ( v i , v j ) ∈ V × V (v_i,v_j)\in\mathbf{V}\times\mathbf{V} (vi,vj)V×V iff ( v j , v i ) ∈ V × V . (v_j,v_i)\in\mathbf{V}\times\mathbf{V}. (vj,vi)V×V.

  3. 画一棵树,将其元组各部分写出来(特别是函数 p p p).
    在这里插入图片描述

G = ( V , r , p ) G=(\mathbf{V},r,p) G=(V,r,p)
V = { v 1 , … , v 6 } V=\{v_1,\dots,v_6\} V={v1,,v6}
r = v 1 r=v_1 r=v1
4. 针对该树,将代码中的变量值写出来(特别是parent数组).

public class Tree {
	/**
	 * 节点数. 表示节点 v_0 至 v_{n-1}.
	 */
	int n;
	
	/**
	 * 根节点. 0 至 n-1.
	 */
	int root;
	
	/**
	 * 父节点.
	 */
	int[] parent;

	/**
	 * 构造一棵树, 第一个节点为根节点, 其余节点均为其直接子节点, 也均为叶节点.
	 */
	public Tree(int paraN) {
		n = paraN;
		parent = new int[n];
		parent[0] = -1; // -1 即 \phi
	}// Of the constructor
}//Of class Tree

n=5;
parent={-1,1,1,2,2,3}

  1. 画一棵三叉树, 并写出它的 child 数组.
    在这里插入图片描述

child 数组:
E = [ 2 3 − 1 4 5 6 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 ] \mathbf{E}=\begin{bmatrix} 2 & 3 & -1\\ 4 & 5 &6 \\-1 & -1& -1\\-1 & -1 & -1\\-1 & -1& -1\\-1 & -1 & -1\end{bmatrix} E=241111351111161111

  1. 按照本贴风格, 重新定义树. 提示: 还是应该定义 parent 函数, 字母表里面只有一个元素.

Let ϕ \phi ϕ be the empty node, a tree is a quadruple T = ( V , Σ , r , p ) T=(\mathbf{V},\Sigma,r,p) T=(V,Σ,r,p),where

  • V \mathbf{V} V is the set of nodes;
  • Σ \Sigma Σ is the alphabet;
  • r ∈ V r\in\mathbf{V} rV is the root node;
  • p : ( V ∪ { ϕ } ) × Σ ∗ → V ∪ { ϕ } p:(\mathbf{V}\cup\{\phi\})\times\Sigma^*\to\mathbf{V}\cup\{\phi\} p:(V{ϕ})×ΣV{ϕ} satisfying
    • ∀ v ∈ V , ∃ 1 s ∈ Σ ∗ s t . p ( r , s ) = v . \forall{v}\in\mathbf{V},\exist1s\in\Sigma^*st.p(r,s)=v. vV,1sΣst.p(r,s)=v.
  1. 根据图、树、m mm-叉树的学习, 谈谈你对元组的理解.

描述用不同属性组合成的某一定义的关系。

  1. 写出本例中的 U , C , D 和 V \mathbf{U}, \mathbf{C}, \mathbf{D} 和 \mathbf{V} U,C,DV. 注: 最后两个属性为决策属性.
    在这里插入图片描述
    U = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 } \mathbf{U}=\{x_1,x_2,x_3,x_4,x_5,x_6,x_7\} U={x1,x2,x3,x4,x5,x6,x7}.
    C = \mathbf{C}= C= { \{ {Headache,Tempersture,Lymphocyte,Leukocyte,Eosinophil } . \}. }.
    D = \mathbf{D}= D= { \{ {Heartbeat,flu } . \}. }.
    V = \mathbf{V}= V= { \{ {Normal,Abnormal,Yes,No } . \}. }.

  2. 定义一个标签分布系统, 即各标签的值不是 0/1, 而是 [0, 1] 区间的实数, 且同一对象的标签和为 1.
    Definition 2. A multi-label decision system is a tuple S = ( X , Y ) S=(\mathbf{X},\mathbf{Y}) S=(X,Y) where X = [ x i j ] n × m ∈ R n × m \mathbf{X}=[x_{ij}]_{n{\times}m}\in \mathbb{R}^{n{\times}m} X=[xij]n×mRn×m is the data matrix, Y = [ y i k ] n × l ∈ { 0 , 1 } n × l \mathbf{Y}=[y_{ik}]_{n{\times}l}\in\{0,1\}^{n{\times}l} Y=[yik]n×l{0,1}n×l is the label matrix,and ∑ r = 1 l y i r = 1 , n \sum^l_{r=1}y_{ir}=1,n r=1lyir=1,n is the number of instances,and m m m is the number of features,and l l l is the number of labels.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值