逻辑回归简介




1、情景描述


身体质量指数(Body Mass Index,BMI)是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。其计算公式为
B M I = 体重 ÷ 身 高 2 \rm BMI=体重÷身高^2 BMI=体重÷2

其中,体重的单位是千克( k g kg kg),身高的单位是米( m m m),因此BMI的单位是千克每米平方( k g / m 2 kg/m^2 kg/m2

BMI的中国标准为

在这里插入图片描述

只要给定一个人的身高和体重,我们就可以根据BMI判断这个人是属于“胖”还是“瘦”。对于N个人的身高和体重,我们把胖和瘦分别使用0和1来表示,逻辑回归处理的问题是,找到一个模型,将这N组数据输入训练,训练好的模型会将这N个人分成胖瘦两类,从本质上讲,逻辑回归训练后的模型在二维空间中是一条直线

在这里插入图片描述

如图所示,点的个数代表样本数,两种颜色代表两种指标,该直线(或平面)将空间中的数据点划分成两部分,属于同一类的数据大多数分布在曲线(或平面)的同一侧,根据这条直线就可以判断新的样本属于哪一类了

2、逻辑回归

2.1、逻辑回归的概念


逻辑回归(Logistic Regression)不是回归算法,而是分类算法。逻辑回归的思想最早可以追溯到19世纪,由英国统计学家Francis Galton在研究豌豆遗传问题时首次提出

逻辑回归与线性回归(详见:传送门)都是一种广义线性模型(详见:传送门)。逻辑回归假设因变量Y服从伯努利分布,而线性回归假设因变量Y服从正态(高斯)分布

逻辑回归属于线性分类器,逻辑回归通过Logistic函数(Sigmoid函数)将数据特征映射到0~1区间的一个概率值(样本属于正例的可能性),通过与0.5的比对得出数据所属的分类。逻辑回归只能用于二分类问题

把线性回归函数的结果y放到Sigmoid函数中去,就构造了逻辑回归函数的数学表达式(Sigmoid函数)
P ( Y = y ∣ x ; θ ) = 1 1 + e − θ T x P(Y=y|x;\theta)=\frac{1}{1+e^{-\theta^Tx}} P(Y=yx;θ)=1+eθTx1

其中, P ( Y = y ∣ x ; θ ) P(Y=y|x;\theta) P(Y=yx;θ)表示因变量 Y Y Y预测值为 y y y的概率,具体来说就是在给定条件 x x x下事件 y y y发生的概率, θ \theta θ是该条件概率的参数

Logistic函数(Sigmoid函数)的图像为

在这里插入图片描述

从上图可以看到,Sigmoid函数是一个S形曲线,取值范围在(0,1)之间,在远离0的地方函数的值很快接近0或1,它的这个特性对于解决二分类问题十分重要

Logistic函数可以分解为

{ h θ ( x ) = θ T x g ( y ) = 1 1 + e − y \begin{cases} \rm h_{\theta}(x)=\theta^Tx\\ \rm g(y)=\frac{1}{1+e^{-y}} \end{cases} { hθ(x)=θTxg(y)=1+ey1

其中 h θ ( x ) h_{\theta}(x) hθ(x)为线性回归的假设函数, g ( y ) \rm g(y) g(y)称为Sigmoid函数,Sigmoid函数是逻辑回归的外层函数

由此可见,逻辑回归通过Sigmoid函数引入了非线性因素,逻辑回归就是一个被Sigmoid函数(Logistic方程)所归一化后的线性回归模型。去除Sigmoid映射函数的话,逻辑回归就是一个线性回归

由图像可见,逻辑回归通过Sigmoid函数将线性回归的值域映射到(0,1)之间,得到的这个结果类似一个概率值,这有助于直观的做出预测类型的判断:大于等于0.5表示正类,小于0.5表示负类

从本质上来说,在分类情况下,经过学习后的逻辑回归分类器其实就是一组权值 θ \theta θ,当有测试样本输入时,这组权值与测试数据按照加权得到
h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n − 1 x n \rm h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_2+...+\theta_{n-1}x_n hθ(x)=θ0+θ1x1+θ2x2+...+θn1xn

这里的 x 1 x_1 x1~ x n x_n xn为每个样本的n个特征值。之后按照Sigmoid函数的形式求出 P ( Y = y ∣ x ; θ ) P(Y=y|x;\theta) P(Y=yx;θ),从而判断每个测试样本所属的类别

对逻辑函数(Sigmoid函数) g ( y ) \rm g(y) g(y)进行转换可得
y = ln ⁡ g ( y ) 1 − g ( y ) y=\ln \frac{\rm g(y)}{\rm 1-g(y)} y=ln1g(y)g(y)

上述中, y = θ T x y=\theta^Tx y=θTx h θ ( x ) h_{\theta}(x) hθ(x)表示线性回归函数,若将逻辑回归的结果 g ( y ) \rm g(y) g(y)看成某个事件发生的概率,那么这个事件不发生的概率为 1 − g ( y ) \rm 1-g(y) 1g(y),两者的比值称为几率(odds),令 g ( y ) = p \rm g(y)=p g(y)=p,则可得
θ T x = ln ⁡

  • 9
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值