逻辑回归python实现

这篇博客详细介绍了使用Python实现逻辑回归的过程,包括Sigmod函数、预测函数、代价函数、损失函数和最速下降优化方法,并提供了具体的代码实现。通过理解这些内容,读者可以掌握逻辑回归模型的构建与训练。
摘要由CSDN通过智能技术生成

Sigmod函数

g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1

img

预测函数

h θ ( x ) = g ( θ T x ) h_{\theta}(x)=g(\theta^{T}x) hθ(x)=g(θTx)

代价函数

c o s t ( h θ ( x ) , y ) = { − l o g ( h θ ( x ) ) , if  y = 1 − l o g ( 1 − h θ ( x ) ) , if  y = 0 cost(h_{\theta}(x),y)= \begin{cases} -log(h_{\theta}(x)), & \text {if $y=1$} \\ -log(1-h_{\theta}(x)), & \text{if $y=0$} \end{cases} cost(hθ(x),y)={ log(hθ(x)),log(1hθ(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值