MA模型

本文详细介绍了MA(q)模型的定义、统计性质,包括常数均值、常数方差、自协方差函数的截尾特性及自相关系数的q阶截尾。同时探讨了MA模型的可逆性,包括可逆性定义、可逆条件以及逆函数的递推公式,指出可逆MA模型的偏自相关系数具有拖尾特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MA模型

1. MA模型的定义

具有如下结构的模型称为q阶移动平均(moving average)模型,简记为MA(q):
{ x t = μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − ⋯ − θ q ϵ t − q θ q ≠ 0 E ( ϵ t ) = 0 , V a r ( ϵ t ) = σ ϵ 2 , E ( ϵ t ϵ s ) = 0 , s ≠ 0 \begin{cases} x_t=\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-\cdots-\theta_q\epsilon_{t-q}\\ \theta_q\neq0\\ E(\epsilon_t)=0,Var(\epsilon_t)=\sigma_{\epsilon}^2,E(\epsilon_t\epsilon_s)=0,s\neq0 \end{cases} xt=μ+ϵtθ1ϵt1θ2ϵt2θqϵtqθq=0E(ϵt)=0,Var(ϵt)=σϵ2,E(ϵtϵs)=0,s=0
与AR模型类似,这里有两个限制条件:

  • 条件一保证了模型的最高阶数为q;
  • 条件二保证了随机干扰项序列{ ϵ t \epsilon_t ϵt}为零均值白噪声序列。
    通常缺省默认式的限制条件,把模型简记为:
    x t = μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − ⋯ − θ q ϵ t − q x_t=\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-\cdots-\theta_q\epsilon_{t-q} xt=μ+ϵtθ1ϵt1θ2ϵt2θqϵtq
    同样的,当 μ = 0 \mu=0 μ=0时,模型为中心化MA(q)模型,非中心化模型只需做一个简单的位移 y t = x t − μ y_t=x_t-\mu yt=xtμ就可以转化为中心化模型。
    引入延迟算子,中心化MA(q)模型又可以简记为:
    x t = Θ ( B ) ϵ t x_t=\Theta(B)\epsilon_t xt=Θ(B)ϵt
    这里 Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − ⋯ − θ q B q \Theta(B)=1-\theta_1B-\theta_2B^2-\cdots-\theta_qB^q Θ(B)=1θ1Bθ2B2θqBq,为q阶移动平均系数多项式。

用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。
MA模型和AR大同小异,它并非是历史时序值的线性组合而是历史白噪声的线性组合。与AR最大的不同之处在于,AR模型中历史白噪声的影响是间接影响当前预测值的(通过影响历史时序值)。

2. MA模型的统计性质

2.1 常数均值

q < ∞ q<\infty q<时,MA(q)模型具有常数均值
E x t = E ( μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − ⋯ − θ q ϵ t − q ) = μ Ex_t=E(\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-\cdots-\theta_q\epsilon_{t-q})=\mu Ext=E(μ+ϵtθ1ϵt1θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值