MA模型
1. MA模型的定义
具有如下结构的模型称为q阶移动平均(moving average)模型,简记为MA(q):
{ x t = μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − ⋯ − θ q ϵ t − q θ q ≠ 0 E ( ϵ t ) = 0 , V a r ( ϵ t ) = σ ϵ 2 , E ( ϵ t ϵ s ) = 0 , s ≠ 0 \begin{cases} x_t=\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-\cdots-\theta_q\epsilon_{t-q}\\ \theta_q\neq0\\ E(\epsilon_t)=0,Var(\epsilon_t)=\sigma_{\epsilon}^2,E(\epsilon_t\epsilon_s)=0,s\neq0 \end{cases} ⎩⎪⎨⎪⎧xt=μ+ϵt−θ1ϵt−1−θ2ϵt−2−⋯−θqϵt−qθq=0E(ϵt)=0,Var(ϵt)=σϵ2,E(ϵtϵs)=0,s=0
与AR模型类似,这里有两个限制条件:
- 条件一保证了模型的最高阶数为q;
- 条件二保证了随机干扰项序列{
ϵ t \epsilon_t ϵt}为零均值白噪声序列。
通常缺省默认式的限制条件,把模型简记为:
x t = μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − ⋯ − θ q ϵ t − q x_t=\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-\cdots-\theta_q\epsilon_{t-q} xt=μ+ϵt−θ1ϵt−1−θ2ϵt−2−⋯−θqϵt−q
同样的,当 μ = 0 \mu=0 μ=0时,模型为中心化MA(q)模型,非中心化模型只需做一个简单的位移 y t = x t − μ y_t=x_t-\mu yt=xt−μ就可以转化为中心化模型。
引入延迟算子,中心化MA(q)模型又可以简记为:
x t = Θ ( B ) ϵ t x_t=\Theta(B)\epsilon_t xt=Θ(B)ϵt
这里 Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − ⋯ − θ q B q \Theta(B)=1-\theta_1B-\theta_2B^2-\cdots-\theta_qB^q Θ(B)=1−θ1B−θ2B2−⋯−θqBq,为q阶移动平均系数多项式。
用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。
MA模型和AR大同小异,它并非是历史时序值的线性组合而是历史白噪声的线性组合。与AR最大的不同之处在于,AR模型中历史白噪声的影响是间接影响当前预测值的(通过影响历史时序值)。
2. MA模型的统计性质
2.1 常数均值
当 q < ∞ q<\infty q<∞时,MA(q)模型具有常数均值
E x t = E ( μ + ϵ t − θ 1 ϵ t − 1 − θ 2 ϵ t − 2 − ⋯ − θ q ϵ t − q ) = μ Ex_t=E(\mu+\epsilon_t-\theta_1\epsilon_{t-1}-\theta_2\epsilon_{t-2}-\cdots-\theta_q\epsilon_{t-q})=\mu Ext=E(μ+ϵt−θ1ϵt−1−θ