mysql的索引

本文介绍了MySQL的InnoDB和MyISAM两种数据引擎的区别,重点讨论了索引的作用、类型、创建与删除,以及索引的优缺点和使用场景。强调了B+树在索引实现中的重要性,并详细解释了索引失效的常见情况,如最左匹配原则的违反、模糊查询的不当使用等。
摘要由CSDN通过智能技术生成

一、索引的定义

索引是一种特殊的文件,包含着对数据表中所有记录的引用指针。(书的目录,快速寻找相应内容)
可以对表中的一列或多列创建索引,并指定索引类型。

(所学索引基于mysql5.5之后的数据引擎InnoDB)

一、mysql常见的两种数据引擎:
5.5版本之后InnoDB和5.5版本之前的MyISAM
区别:
(1)InnoDB支持事务(保持数据的稳定性),稳定性比MyISAM好,MyISAM不支持事务
(2)MyISAM性能比较高,比InnoDB高

二、存储数据模组:
1.磁盘:容量大、价格便宜、操作速度慢、可持久化(电脑重启数据还存在)
2.内存:容量小、价格比较贵、操作速度快、不可持久化
3.CPU缓存:容量小、操作速度极快、不可以持久化

索引中数据存储在磁盘中,存储的是数据的位置
查询数据的存储目录:
show variables like ‘%dir%’;

二、为什么使用索引

1.索引避免了顺序查询,提高查询速率
2.使用索引可以将数据库中的关键索引信息存储到内存中,内存的操作速度比磁盘快

一张表可以有多个索引,每个索引就是一个目录。

三、索引的优缺点和使用场景

1.优点
可以提高查询效率
2.缺点
(1)维护成本高,因为索引使用B+树,每次新增、删除数据都需要整理树结构
(2)增加存储成本(磁盘、内存)
(3)索引过多会对MYSQL的优化器(选择合适索引)造成一定负担
3.使用场景
(1)数据量大
(2)经常查询的列
4.不适用场景
(1)数据使用频率低,而且添加和删除比较高频的业务
(2)电脑本身磁盘和内存空间不足
5.索引使用注意事项
对已经存在的很多数据的表新增索引的时候,不能在生产环境上执行(找一个没有用户使用的时间段)。

四、索引的分类

1.按照是否为主键
(1)主键索引(聚簇索引):不允许有空值,一般在建表的时候通过主键约束同时创建主键索引
(2)非主键索引(非聚簇索引/二级索引):除主键索引的其他索引
2.按照特征
(1)普通索引
(2)唯一索引(创建索引的字段具有唯一性)
(3)联合索引(由一个表中的多个字段组成的索引)

五、索引的创建

1.主键索引、唯一索引在创建表时,创建了主键约束或者唯一约束时会自动创建主键索引和唯一索引

2.查看索引:show index from table_name;

3.手动创建索引
普通索引:create index 索引名 on 表名(字段名)

联合索引:create index 索引名 on 表名(字段名,字段名)

唯一索引:create unique index 索引名 on 表名(字段名)
或create unique index 索引名 on 表名(字段名,字段名)

主键索引:alter table 表名 add primary key(字段名)

在创建表时创建索引:
creat table student(
id …,
name…,
address…,
age…,
key index_address (address),(普通索引)
key index_name_age(name,age) (联合索引,注意字段先后顺序)
);

注意:
索引和约束联系和区别
1.创建索引时会自动创建约束,在创建约束时也会自动创建索引
2.索引和约束是不同的业务,约束是用来规定数据的正确性,索引是用来提升数据库的程序性

六、索引的删除

drop index 索引名 on 表名;
(每个索引名在一张表中是唯一的,不能重复)

注意事项:
(1)创建索引会创建对应约束,删除索引会删除对应约束
(2)唯一索引创建前提:原先的数据具有唯一性

七、InnoDB MySQ索引实现原理

三阶段:
1.二叉树(数据多时 时间久,维护困难,性能低)
2.B-树 (叶子结点和非叶子结点存储所有信息,内存太大,索引加载到内存中很慢)
3.B+树(优化:1.非叶子结点不存储表的
所有信息 2.叶子结点存储的非数据本身,而是数据地址 3.每层数据之间使用链表相连)

聚簇索引(主键索引/聚集索引)和非聚簇索引(非主键索引/二级索引/非聚集索引)区别

聚簇索引:叶子结点存储的是数据,一遍直接能查询到数据(只要查询到相应的ID就能直接得到id对应的所有信息)效率高,一张表只能有一个
非聚簇索引:叶子结点存储的是主键ID,拿到主键ID后再从聚簇索引中查找,效率低(非聚簇查找过程叫做回表查询,查两边),一张表可以有多个
(每一个结点对应的都是一个B+树)

八、索引失效的最常见的场景

索引效验:确认索引是否生效
explain select * from student where id=1;
在这里插入图片描述
type:all是全表查询
判断条件:
key:key为null表示索引无效或者没有索引,不为空有值,表明执行时使用的是这个索引,索引有效

索引失效场景:
一、索引不满足最左匹配原则
*最左匹配原则(前缀匹配):根据联合索引的创建,以最左边为起点字段查询可以使用联合索引,联合索引才能生效

eg:
创建索引:create index sno_sname_age on student (sno,sname,age);
最左匹配原则校验索引的各种对错方式:
1.explain select * from student where sno=‘2001’ and sname=‘zhangsan’ and age=18;(正确)
2.explain select * from student where sno=‘2001’ and sname=‘zhangsan’ ;(正确)
3.explain select * from student where sno='2001’and age=18;(正确)
4.explain select * from student where sno=‘2001’;(正确)
5.explain select * from student where sname=‘zhangsan’ and sno=‘2001’ ;(正确,系统优化为sno and sname)
6.explain select * from student where sno=‘2001’ and age=18 and sname=‘zhangsan’ and age=18;(正确)

key:sn_sname_age

7.explain select * from student where sname=‘zhangsan’ and age=18;(错误)
8.explain select * from student where age=18;(错误)
key:sn_sname_age
9.explain select * from student where age=18 and sname=‘zhangsan’;(错误)

注意:只要有最左边的列就就可以正确查询,因为在B+树中,保存的只是联合索引最左边的列的值

二、使用错误的模糊查询
like模糊查询的常用方式:
1.前面确定:字段名 like ‘张%’;
2.中间确定:字段名 like ‘%张%’;
3.后面确定:字段名 like ‘%张’;

只有1.前面确定能触发索引,其他不行
key:null

三、索引使用运算操作(+/-/*…)
eg:explain select * from student where id+1=2;
key:null(索引失效)

四、列使用函数(ifnull/count…)
eg:explain select * from student where ifnull(id,0)>5;
key:null

五、查询列使用了隐式类型转换
eg:id创建为varchar,查询时赋值为int型
key:null

六、使用is not null
eg:explain select * from student where address is null;(正确)
explain select * from student where address is not null;(错误)key:null

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值