Python数据分析与展示(4)

本文详细介绍了Python数据分析库Pandas,包括Pandas数据特征分析、Series类型、DataFrame类型、数据类型运算以及数据的累计统计分析。重点讨论了Series的创建、操作以及数据的相关分析,如协方差和Pearson相关系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Pandas数据特征分析

Pandas库的引用:
Pandas是Python第三方库,提供高性能易用数据类型和分析工具。
import pandas as pd
Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用

Pandas库的理解
两个数据类型:Series, DataFrame基于上述数据类型的各类操作
基本操作、运算操作、特征类操作、关联类操作

二、series类型:

 

1、Series类型

Series类型可以由如下类型创建:

Python列表,index与列表元素个数一致。今标量值,index表达Series类型的尺寸。

Python字典,键值对中的“键”是索引,index从字典中进行选择操作。

ndarray,索引和数据都可以通过ndarray类型创建。其他函数,range(函数等。
 

2、Series类型的基本操作

Series类型包括index和values两部分。

Series类型的操作类似ndarray类型。

Series类型的操作类似Python字典类型

3、Series类型的基本操作

Series类型的操作类似ndarray类型索引方法相同,采用门。

NumPy中运算和操作可用于Series类型。可以通过自定义索引的列表进行切片。

可以通过自动索引进行切片,如果存在自定义索引,则—同被切片。

三、 DataFrame类型:

 

 

四、Pandas库的数据类型运算

算术运算法则

算术运算根据行列索引,补齐后运算,运算默认产生浮点数。

补齐时缺项填充NaN(空值)

二维和一维、一维和零维间为广播运算

采用+-*/符号进行的二元运算产生新的对象

 

 不同维度,广播运算,默认在1轴 

将一组数据通过摘要(有损地提取数据特征的过程)的方式,可以获得基本统计(含排序)、分布/累计统计、数据特征(相关性、周期性等)、数据挖掘(形成知识)。

  • .sort_values()方法在指定轴上根据数值进行排序,默认升序
  • Series.sort_values(axis=0, ascending=True)
    DataFrame.sort_values(by, axis=0, ascending=True)     # by:axis轴上的某个索引或索引列表

五、 数据的累计统计分析

 

数据的相关分析

两个事物,表示为X和Y,如何判断它们之间的存在相关性?

  • X增大,Y增大,两个变量正相关
  • X增大,Y减小,两个变量负相关
  • X增大,Y无视,两个变量不相关

协方差:

  • 协方差>0, X和Y正相关
  • 协方差<0, X和Y负相关
  • 协方差=0, X和Y独立无关

Pearson相关系数:

  • 0.8 - 1.0 极强相关
  • 0.6 - 0.8 强相关
  • 0.4 - 0.6 中等程度相关
  • 0.2 - 0.4 弱相关
  • 0.0 - 0.2 极弱相关或无相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值