目录
一、SVM原理
1 SVM简介:
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。
简而言之,SVM的的学习算法就是求解凸二次规划的最优化算法。
2 线性分类
所谓线性分类,简而言之,一条线可以按照数据可分的原理将需要分类的数据划分开来。类似如下图所示:(也可详细解释为,从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了)
这种方法即被称为:线性分类器,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。也就是说,数据不总是二维的,比如,三维的超平面是面。(在此只做了解)
引入知识要点:
1 几何分隔:对于给定的数据集来定义超平面关于样本点的几何间隔。具体详细讲解内容可参考此文章:支持向量机(SVM)——原理篇 - 知乎 (zhihu.com)
2 最大间隔分类器Maximum Margin Classifier:
简称MMH, 对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。
用以生成支持向量的点,如上图XO,被称为支持向量点,因此SVM有一个优点,就是即使有大量的数据,但是支持向量点是固定的,因此即使再次训练大量数据,这个超平面也可能不会变化。
3 非线性分类
对于输入空间中的非线性分类问题,可以通过非线性变换将它转化为某个维特征空间中的线性分类问题,

本文介绍了支持向量机(SVM)的基本原理,包括线性分类、非线性分类(核函数应用)以及松弛变量的概念。在非线性分类中,重点讨论了如何通过核函数简化高维空间的复杂运算。此外,还分享了基于sklearn库的SVM代码实现,探讨了不同核函数的选择对模型的影响。


最低0.47元/天 解锁文章
1113

被折叠的 条评论
为什么被折叠?



