微表情检测与识别
文章平均质量分 93
MES&MER
福芙芙_growing
Growing Up
展开
-
Video Self-Stitching Graph Network for Temporal Action Localization
视频中的时序动作检测时序动作往往跨度较大,较短的动作在所有动作中占据最大的比例,在所有TAL方法中普遍得分不高。对于短时间内迅速发生的动作提出了一种多层次,跨尺度的方案,利用多尺度特征的跨尺度相关性加强短动作的表示,促进定位。视频自拼接图网络(VSG)有两个关键部分:1、视频自拼接(VSS)2、跨尺度图金字塔网络(xGPN)xGPN中的每个层设计了一个跨尺度的图网络,其中包含一个时间分支和一个图分支的混合模块相关内容:针对细微动作/短时序动作检测问题的常用解决方法。原创 2023-02-14 11:20:43 · 386 阅读 · 0 评论 -
Micro-expression recognition with supervised contrastive learning基于监督对比学习的微表情识别
面部微表情是面部肌肉的不自主运动,暴露了个人的潜在情绪。由于面部肌肉变化的微妙性和多样性,提取有效的特征来识别微表情是一个挑战。本文提出了一个有监督的对比学习(MER-Supcon)的微表情识别框架,其主要目的是提取微表情的关键特征,并克服不相关的面部运动引起的噪音。首先,提出了一种新的双终端微表情采集策略,并应用于获得光流图,旨在扩大数据集并减少微表情斑点的不利影响。然后,引入监督下的对比学习来学习微表情的关键表征进行分类。原创 2022-10-14 11:36:53 · 2165 阅读 · 6 评论 -
Micro-Expression Classification based on Landmark Relations with Graph AttentionConvolutionalNetwork
2021CVPR研究内容及背景文章贡献•我们提出了一种端到端地标辅助的双流图形注意力卷积网络,该网络将地标点位置和光流信息相结合,对面部微表情进行分类。•我们设计了一个图来提取时间信息使用三帧结构。我们使用两个流图的注意网络,一个用于节点位置,另一个用于光流补丁信息,然后将它们融合。我们描述了一种基于光流幅值从视频中自动选择高强度表达帧的方法。•我们在两个公开可用的数据集上为3类和5类面部微表情提供了一个全面的评估。整体框架1.利用欧拉运动放大率(EMM)对信号进行放大,提取放大原创 2022-02-20 20:08:23 · 2405 阅读 · 3 评论