基于图神经网络的异构图表示学习和推荐算法研究(完整代码+数据)

这篇博客探讨了基于图神经网络的异构图表示学习,包括RHCO和GARec算法。介绍了实验设置、Django配置、数据集和预训练方法,以及不同基线模型的性能比较。此外,还详细阐述了推荐算法的召回与精排阶段,以及在多个数据集上的消融实验和结果分析。
摘要由CSDN通过智能技术生成

基于图神经网络的异构图表示学习和推荐算法研究。包含基于对比学习的关系感知异构图神经网络(Relation-aware Heterogeneous Graph Neural Network with Contrastive Learning, RHCO)、基于图神经网络的学术推荐算法(Graph Neural Network based Academic Recommendation Algorithm, GARec),详细设计见md文件。

目录结构

GNN-Recommendation/
    gnnrec/             算法模块顶级包
        hge/            异构图表示学习模块
        kgrec/          基于图神经网络的推荐算法模块
    data/               数据集目录(已添加.gitignore)
    model/              模型保存目录(已添加.gitignore)
    img/                图片目录
    academic_graph/     Django项目模块
    rank/               Django应用
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值