基于图神经网络算法实现反欺诈数据识别 数据集+代码

本教程介绍如何运用图神经网络处理反欺诈评论识别任务。通过加载YelpChi数据集,进行数据预处理,构建多视图图神经网络模型,并在训练集上训练后,在验证集上测试模型效果,探讨了数据采样、模型参数调整、多视图建模和训练策略优化等关键点。
摘要由CSDN通过智能技术生成

项目简介·:

基于图神经网络实现欺诈评论识别方法,反欺诈评论识别是给出一条评论,判断这条评论是否包含欺诈信息。本教程通过加载和预处理数据、构造和提取特征、训练分类器得到一个可以应用的反欺诈识别工具。反欺诈识别是二分类任务,每个类别用一个数字表示(类别编码),类别和类别编码的对应关系如下表所示。

类别名
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值